STORMWATER MANAGEMENT REPORT

prepared for

Nexus Spruce Street Apartments Preliminary and Final Site Plan Township of Lawrence Mercer County, New Jersey

Lot 39 in Block 701

November 18, 2021

Prepared by Hopewell Valley Engineering, P.C. P.O. Box 710 Pennington, NJ 08534

HVE Project No. 1107537C

No. TOENSED TO SO TONAL END

Russell M. Smith, P.E.
New Jersey License No. 33065

Digitally signed by Russell M Smith Date: 2021.11.23 11:11:11 -05'00'

TABLE OF CONTENTS

Project Description and Methodology1
Site Aerial Image
USDA Web Soil Survey5
Routing Summary Sheets
Existing POA A, B & C Flow Calculations
POA A
Proposed Basin and Points of Analysis (POA) C Flow Calculations
Flow to Basin (POA A & B)
Groundwater Recharge Calculations96
Water Quality Calculations98
Emergency Spillway Design
Storm Sewer and Conduit Outlet Protection Calculations
Appendix A – Stormwater Soil Test Results
Annendix B – Existing and Developed Drainage Area Plan

Project Description and Methodology

The applicant proposes to improve the existing developed site into 129 one (1), two (2), and three (3) bedroom apartments in five (5) three (3) story buildings. A 3,600 SF Community Building is also proposed. The site will be served by a boulevard-style driveway that connects to Spruce Street. Parking will be provided around the buildings in paved lots with perpendicular and parallel parking spaces. A total of 246 parking spaces are proposed.

The soil survey identifies that the existing soils are Udorthents, 0% to 8% slopes and Elkton Silt Loam, 0% to 2% slopes. These soils are classified as Hydrologic Soil Group D and C/D respectively. We will use HSG "D" for the calculations.

- A. Hydrologic Soil Condition
 - Use "Good" condition for all pervious areas
- B. Design Storms
 - 1 yr. Water Quality (NJDEP design storm)
 - 2 yr. storm, Region C, 24 hour (Allowable Discharge = 50% of predeveloped flow)
 - 10 yr. storm, Region C, 24 hour (Allowable Discharge = 75% of predeveloped flow)
 - 100 yr. storm, Region C, 24 hour (Allowable Discharge = 80% of predeveloped flow)

The stormwater plan for the project will incorporate the "green infrastructure" measure of Filterra Bioretention Systems to provide water quality treatment. This configuration was modeled using the Bentley Pond Pack program. A combination extended detention basin and infiltration basin (Green Infrastructure) will be used to provide quantity control. Soil testing completed in the area of the basin showed permeability rates in loamy sand layers of 2 to 4.5 in/hr. A seasonal high water table was found at elevation 71. Soil testing results are included in Appendix A of this report.

The proposed project will not create an annual recharge deficit per GSR-32 calculation and, therefore, groundwater recharge measures are not required.

The existing and developed Drainage Area Plans are included in Appendix B of this report.

SITE AERIAL IMAGE

REFERENCE:
NEW JERSEY 2015 HIGH RESOLUTION
ORTHOPHOTOGRAPHY, https://njgin.state.nj.us/
ACCESSED 07/01/20

CAUTION: If this document does not contain the raised impression seel of the professional, it is not an authorized original document and may have been altered.

HOPEWELL VALLEY ENGINEERING, PC

ENGINEERS, PLANNERS & LAND SURVEYORS

1600 Reed Road, Suite A
Pennington, NJ 08534-5002
Tel: 609-745-5800
Fax: 609-745-5807
www.hopewellvalleyengineering.com

Date: 05/07/20 Soole: 1"=200' Job No: 1106672A

AM01672A

SITE AERIAL IMAGE

SPRUCE STREET APARTMENTS
LOT 39 BLOCK 70
STUATE IN

LAWRENCE TOWNSHIP, MERCER COUNTY, NEW JERSEY

Natural Resources Conservation Service

.

National Cooperative Soil Survey Web Soil Survey

MAP LEGEND

Very Stony Spot Stony Spot Spoil Area Wet Spot Soil Map Unit Polygons Area of Interest (AOI) Soil Map Unit Lines Area of Interest (AOI)

Soils

Special Line Features .

Soil Map Unit Points

Special Point Features

9

Other

Water Features	Streams	Transportation	+ Rails	Interstat
Blowout	Borrow Pit	- Co.	ciay spor	Closed Depression

te Highways

Gravelly Spot

Gravel Pit

and Canals

US Routes

Local Roads

Background

Marsh or swamp

Lava Flow

Landfill

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000

Warning: Soil Map may not be valid at this scale.

contrasting soils that could have been shown at a more detailed Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of

Please rely on the bar scale on each map sheet for map measurements. Natural Resources Conservation Service Coordinate System: Web Mercator (EPSG:3857) Web Soil Survey URL: Source of Map:

Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Mercer County, New Jersey Survey Area Data: Version 16, Jun 1, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: May 2, 2019—Jul 9,

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Severely Eroded Spot

Sandy Spot Saline Spot

Slide or Slip

Sinkhole

Sodic Spot

Mercer County, New Jersey

UdstB—Udorthents, stratified substratum, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 4jq2 Elevation: 30 to 1,500 feet

Mean annual precipitation: 28 to 59 inches Mean annual air temperature: 46 to 79 degrees F

Frost-free period: 161 to 231 days

Farmland classification: Not prime farmland

Map Unit Composition

Udorthents, stratified substratum, and similar soils: 95 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents, Stratified Substratum

Setting

Landform: Low hills Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loamy lateral spread deposits over gravelly lateral spread deposits

Typical profile

A - 0 to 10 inches: sand

C - 10 to 72 inches: gravelly coarse sand

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High to

very high (6.00 to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Urban land

Percent of map unit: 5 percent

Landform: Low hills

Landform position (three-dimensional): Lower third of mountainflank

Down-slope shape: Linear, convex

Across-slope shape: Linear Hydric soil rating: Unranked

Data Source Information

Soil Survey Area: Mercer County, New Jersey Survey Area Data: Version 16, Jun 1, 2020

Mercer County, New Jersey

EkbA—Elkton silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 4jmh

Elevation: 0 to 200 feet

Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F

Frost-free period: 131 to 178 days

Farmland classification: Farmland of statewide importance, if drained

Map Unit Composition

Elkton and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Elkton

Setting

Landform: Marine terraces Down-slope shape: Linear Across-slope shape: Linear

Parent material: Silty eolian deposits over loamy alluvium and/or

loamy marine deposits

Typical profile

Ap - 0 to 6 inches: silt loam BAg - 6 to 10 inches: silty clay Btg - 10 to 25 inches: clay Cg - 25 to 60 inches: silty clay

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low

to moderately high (0.00 to 0.20 in/hr) Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Fallsington

Percent of map unit: 5 percent Landform: Flats, depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear, concave Across-slope shape: Linear, concave

Hydric soil rating: Yes

Woodstown

Percent of map unit: 5 percent Landform: Flats, drainageways

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear.

Across-slope shape: Linear, concave

Hydric soil rating: No

Keyport

Percent of map unit: 5 percent Landform: Depressions, flats

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave, linear Across-slope shape: Concave, linear

Hydric soil rating: No

Data Source Information

Soil Survey Area: Mercer County, New Jersey Survey Area Data: Version 16, Jun 1, 2020

Routing Summary Sheet

Determine Allowable Basin Outflow

Existing Drainage Areas A + B = Total Existing

Allowable Discharge

12 cfs + 0.8 cfs = 12.8 cfs

12.8 cfs x 50% = 6.4 cfs

10 YEAR Storm

2 YEAR Storm

22.3 cfs + 1.5 cfs = 23.8 cfs

 $23.8 \text{ cfs} \times 75\% = 17.9 \text{ cfs}$

100 YEAR Storm

42.7 cfs + 3 cfs = 45.7 cfs

 $45.7 \text{ cfs} \times 80\% = 36.6 \text{ cfs}$

Proposed Basin Outflow with Infiltration plus Undetained Areas A & B

2 YEAR Storm = 5.13 cfs vs.

11

10 YEAR Storm

16.06 cfs vs. 17.9 cfs allowable

6.4 cfs allowable

100 YEAR Storm = 36.15 cfs vs.

vs. 36.6 cfs allowable

Proposed Basin Outflow without Infiltration plus Undetained Areas A & B

2 YEAR Storm = 6.01 cfs vs. 6.4 cfs allowable

10 YEAR Storm = 17.34 cfs vs. 17.9 cfs allowable

100 YEAR Storm = 36.41 cfs vs. 36.6 cfs allowable

ROUTING SUMMARY SHEET

Existing and Proposed Flow to POA C

	<u>Existing</u>	Proposed
2 YEAR Storm	1.28 cfs	0.74 cfs
10 YEAR Storm	2.0 cfs	0.93 cfs
100 YEAR Storm	3.38 cfs	1.43 cfs

EXISTING POA A, B & C FLOW CALCULATIONS

Name.... EXIST TO POA A

File.... F:\1107537A\1107537C\Design\Existing Flow to POA A.ppw

RUNOFF CURVE NUMBER DATA

		Area	Impervious Adjustment	Adjusted	
Soil/Surface Description	CN	acres	%C %UC	CN	
Open Space- Good condition; grass	c 80	.740		80.00	
Woods-Good Condition	77	3.740		77.00	
Impervious-Roof/Parking	98	1.820		98.00	
COMPOSITE AREA & WEIGHTED CN>		6.300		83.42 (83)	
	:::::	::::::::::	11111111111		

Name.... EXIST TO POA A

File.... F:\1107537A\1107537C\Design\Existing Flow to POA A.ppw

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Shallow

Hydraulic Length 180.00 ft

Slope

.004000 ft/ft

Paved

Avg. Velocity 1.29 ft/sec

Segment #1 Time: .0389 hrs ______

Segment #2: Tc: TR-55 Sheet

Mannings n .2400 Hydraulic Length 20.00 ft

2yr, 24hr P 3.3000 in

Slope

.020000 ft/ft

Avg. Velocity .09 ft/sec

Segment #2 Time: .0646 hrs

Segment #3: Tc: TR-55 Shallow

Hydraulic Length 560.00 ft

Slope

.022000 ft/ft

Unpaved

Avg. Velocity 2.39 ft/sec

Segment #3 Time: .0650 hrs

> _____ Total Tc: .1685 hrs

Type.... Tc Calcs Name.... EXIST TO POA A

File.... F:\1107537A\1107537C\Design\Existing Flow to POA A.ppw

```
Tc Equations used...
Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))
   Where: Tc = Time of concentration, hrs
         n = Mannings n
         Lf = Flow length, ft
         P = 2yr, 24hr Rain depth, inches
         Sf = Slope, %
Unpaved surface:
   V = 16.1345 * (Sf**0.5)
   Paved surface:
   V = 20.3282 * (Sf**0.5)
   Tc = (Lf / V) / (3600sec/hr)
   Where: V = Velocity, ft/sec
         Sf = Slope, ft/ft
         Tc = Time of concentration, hrs
         Lf = Flow length, ft
```

Page 6.03 Type.... Unit Hyd. Summary

Event: 1 yr Name.... EXIST TO POA A Tag: 1 File.... F:\1107537A\1107537C\Design\Existing Flow to POA A.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 1 year storm

Rain Depth = 1.2500 in Duration

= 1.9999 hrs Rain Depth = = F:\1107537A\1107537C\Design\ Rain Dir

Rain File -ID = - NJDEP Water Qual Unit Hyd Type = Default Curvilinear

HYG Dir = $F:\1107537A\1107537C\Design\$ HYG File - ID = Existing.HYG - EXIST TO POA A 1

= .1685 hrs

Drainage Area = 6.300 acres Runoff CN= 83

Computational Time Increment = .02247 hrs

= 1.1684 hrs Computed Peak Time = 3.77 cfs Computed Peak Flow

.0500 hrs Time Increment for HYG File = Peak Time, Interpolated Output = 1.1500 hrs Peak Flow, Interpolated Output = 3.67 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

_____ ID: EXIST TO POA A

CN = 83

6.300 acres Area =

2.0482 in .4096 in 0.2S =

Cumulative Runoff

.2445 in

.128 ac-ft

HYG Volume ...

.128 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .16852 hrs (ID: EXIST TO POA A) Computational Incr, Tm = .02247 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

42.36 cfs Unit peak, qp =Unit peak time Tp = .11235 hrs

.44938 hrs Unit receding limb, Tr = Total unit time, Tb = .56173 hrs

7/29/2021

Page 6.05 Type.... Unit Hyd. Summary

Name.... EXIST TO POA A Tag: 2 File.... F:\1107537A\1107537C\Design\Existing Flow to POA A.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

= 24.0000 hrs Rain Depth = F:\1107537A\1107537C\Design\ Rain Depth = 3.3000 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F: 1107537A 1107537C \ge$ HYG File - ID = Existing.HYG - EXIST TO POA A 2

= .1685 hrs

Drainage Area = 6.300 acres Runoff CN= 83

Computational Time Increment = .02247 hrs Computed Peak Time = 12.1559 hrs12.02 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1500 hrs Peak Flow, Interpolated Output = 11.93 cfs

DRAINAGE AREA _____

ID: EXIST TO POA A

CN = 83

Area = 6.300 acres

S = 2.0482 in 0.2s =.4096 in

Cumulative Runoff

1.6916 in

.888 ac-ft

HYG Volume...

.888 ac-ft (area under HYG curve)

Event: 2 yr

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .16852 hrs (ID: EXIST TO POA A) Computational Incr, Tm = .02247 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

42.36 cfs qp =Unit peak, .11235 hrs Unit peak time = qT

Unit receding limb, Tr = .44938 hrs

Total unit time, Tb = .56173 hrs

Page 6.08

Type.... Unit Hyd. Summary

Name.... EXIST TO POA A

Tag:

10

Event: 10 yr

File.... F:\1107537A\1107537C\Design\Existing Flow to POA A.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

= 24.0000 hrs Rain Depth = F:\1107537A\1107537C\Design\ Rain Depth = 5.0000 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F:\1107537A\1107537C\Design\$ HYG File - ID = Existing. HYG - EXIST TO POA A 10

= .1685 hrs

Drainage Area = 6.300 acres Runoff CN= 83

Computational Time Increment - .02247 hrs = 12.1559 hrsComputed Peak Time Computed Peak Flow = 22.30 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1500 hrs Peak Flow, Interpolated Output = 22.18 cfs

DRAINAGE AREA _____

ID: EXIST TO POA A

CN = 83

6.300 acres Area =

2.0482 in S = 0.2s =.4096 in

Cumulative Runoff

3.1741 in

1.666 ac-ft

HYG Volume...

1.666 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS ****

Time Concentration, Tc = .16852 hrs (ID: EXIST TO POA A)

Computational Incr, Tm = .02247 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))

1.6698 (solved from K = .7491) Receding/Rising, Tr/Tp =

qp =42.36 cfs Unit peak, Tp = .11235 hrsUnit peak time Unit receding limb, Tr = .44938 hrs Total unit time, Tb = .56173 hrs

Page 6.11 Type.... Unit Hyd. Summary

Event: 100 yr Name.... EXIST TO POA A 100 Tag:

File.... F:\1107537A\1107537C\Design\Existing Flow to POA A.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

= 24.0000 hrs Rain Depth = = F:\1107537A\1107537C\Design\ Rain Depth = 8.3000 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F:\1107537A\1107537C\Design\$

HYG File - ID = Existing. HYG - EXIST TO POA A 100

= .1685 hrs

Drainage Area = 6.300 acres Runoff CN= 83

Computational Time Increment = .02247 hrs = 12.1559 hrsComputed Peak Time Computed Peak Flow 42.66 cfs

Time Increment for HYG File = Peak Time, Interpolated Output = 12.1500 hrs Peak Flow, Interpolated Output = 42.48 cfs

DRAINAGE AREA _____

ID: EXIST TO POA A

CN = 83

Area = 6.300 acres

2.0482 in S =

0.2s =.4096 in

Cumulative Runoff

6.2643 in

3.289 ac-ft

HYG Volume...

3.289 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .16852 hrs (ID: EXIST TO POA A) Computational Incr, Tm = .02247 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

= qp42.36 cfs Unit peak,

.11235 hrs Unit peak time = qT

Unit receding limb, Tr = .44938 hrs

Total unit time, Tb =.56173 hrs

7/29/2021

Type.... Runoff CN-Area Name.... EXIST TO POA B

File.... F:\1107537A\1107537C\Design\Existing Flow to POA B.ppw

RUNOFF CURVE	NUMBER DATA	
		::::::

Soil/Surface Description	CN	Area acres	The second second	tment %UC	Adjusted CN
Woods- Good condition	77	.190			77.00
Open Space-Good condition	80	.240			80.00
COMPOSITE AREA & WEIGHTED CN	_	.430			78.67 (79)

Page 4.01

Type.... Tc Calcs

Name.... EXIST TO POA B

File.... F:\1107537A\1107537C\Design\Existing Flow to POA B.ppw

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Sheet

Mannings n .2400 Hydraulic Length 70.00 ft 2yr, 24hr P 3.3000 in Slope .043000 ft/ft

Avg. Velocity

.15 ft/sec

Segment #1 Time: .1296 hrs

Total Tc: .1296 hrs

S/N: 5eddc792-eed7-413c-9f7c-e419572d98eb\:

Page 4.02

Name.... EXIST TO POA B

File.... F:\1107537A\1107537C\Design\Existing Flow to POA B.ppw

Tc Equations used...

Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))

Where: Tc = Time of concentration, hrs

n = Mannings n

Lf = Flow length, ft

P = 2yr, 24hr Rain depth, inches

Sf = Slope, %

Page 6.03 Type.... Unit Hyd. Summary Event: 1 yr Tag: 1

Name.... EXIST TO POA B File.... F:\1107537A\1107537C\Design\Existing Flow to POA B.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 1 year storm

= 1.9999 hrs Rain Depth = F:\1107537A\1107537C\Design\ Rain Depth = 1.2500 in Duration

Rain Dir

Rain File -ID = - NJDEP Water Qual Unit Hyd Type = Default Curvilinear

HYG Dir = $F:\1107537A\1107537C\Design\$ HYG File - ID = Existing.HYG - EXIST TO POA B 1

= .1296 hrsTC

Drainage Area = .430 acres Runoff CN= 79

Computational Time Increment = .01728 hrs = 1.1580 hrs Computed Peak Time .16 cfs Computed Peak Flow

.0500 hrs Time Increment for HYG File = Peak Time, Interpolated Output = 1.1500 hrs Peak Flow, Interpolated Output =

DRAINAGE AREA _____

ID: EXIST TO POA B

CN = 79

.430 acres Area =

2.6582 in S =

0.2s =.5316 in

Cumulative Runoff

.1528 in

.005 ac-ft

HYG Volume...

.005 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .12963 hrs (ID: EXIST TO POA B)

Computational Incr, Tm = .01728 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

3.76 cfs qp =Unit peak,

.08642 hrs Tp =Unit peak time

.34568 hrs Unit receding limb, Tr =

Tb =.43210 hrs Total unit time,

Page 6.05

Type.... Unit Hyd. Summary

Name.... EXIST TO POA B

Tag: 2

Event: 2 yr

File.... F:\1107537A\1107537C\Design\Existing Flow to POA B.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

= 24.0000 hrs Rain Depth = F:\1107537A\1107537C\Design\ Duration Rain Depth = 3.3000 in

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

= F:\1107537A\1107537C\Design\ HYG Dir HYG File - ID = Existing. HYG - EXIST TO POA B 2

= .1296 hrs

Drainage Area = .430 acres Runoff CN= 79

Computational Time Increment - .01728 hrs = 12.1333 hrsComputed Peak Time .75 cfs

Computed Peak Flow

.0500 hrs Time Increment for HYG File = Peak Time, Interpolated Output = 12.1500 hrs

Peak Flow, Interpolated Output = .73 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA _____

ID:EXIST TO POA B

CN -79 Area =

.430 acres

2.6582 in

0.2s =.5316 in

Cumulative Runoff

1.4123 in

.051 ac-ft

HYG Volume ...

.051 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .12963 hrs (ID: EXIST TO POA B)

Computational Incr, Tm = .01728 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

= qp 3.76 cfs Unit peak,

= qT.08642 hrs Unit peak time

.34568 hrs Unit receding limb, Tr =

.43210 hrs Total unit time, Tb =

Page 6.08 Type.... Unit Hyd. Summary

10

File.... F:\1107537A\1107537C\Design\Existing Flow to POA B.ppw

Tag:

SCS UNIT HYDROGRAPH METHOD

Name.... EXIST TO POA B

STORM EVENT: 10 year storm

= 24.0000 nrs = F:\1107537A\1107537C\Design\ Rain Depth = 5.0000 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F: 1107537A 1107537C \ge$ HYG File - ID = Existing. HYG - EXIST TO POA B 10

= .1296 hrs

Drainage Area = .430 acres Runoff CN= 79

Computational Time Increment = .01728 hrs = 12.1333 hrs Computed Peak Time =1.49 cfs Computed Peak Flow

.0500 hrs Time Increment for HYG File = Peak Time, Interpolated Output = 12.1500 hrs Peak Flow, Interpolated Output = 1.45 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA _____

ID: EXIST TO POA B

79 CN =

.430 acres Area =

2.6582 in S = .5316 in 0.2s =

Cumulative Runoff

2.8017 in

.100 ac-ft

HYG Volume...

.100 ac-ft (area under HYG curve)

Event: 10 yr

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .12963 hrs (ID: EXIST TO POA B) Computational Incr, Tm = .01728 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

3.76 cfs Unit peak, = qp

Tp = .08642 hrsUnit peak time

Unit receding limb, Tr = .34568 hrs

Total unit time, Tb = .43210 hrs Type.... Unit Hyd. Summary Page 6.11

Name.... EXIST TO POA B 100 Event: 100 yr Tag:

File.... F:\1107537A\1107537C\Design\Existing Flow to POA B.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 nrs = F:\1107537A\1107537C\Design\ = 24.0000 hrsRain Depth = 8.3000 in

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

= F:\1107537A\1107537C\Design\ HYG Dir

HYG File - ID = Existing. HYG - EXIST TO POA B 100

= .1296 hrs

Drainage Area = .430 acres Runoff CN= 79

Computational Time Increment - .01728 hrs = 12.1333 hrs Computed Peak Time 2.99 cfs Computed Peak Flow =

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1500 hrs Peak Flow, Interpolated Output = 2.90 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA ______

ID: EXIST TO POA B

CN = 79

Area = .430 acres

S = 2.6582 in

0.2s =.5316 in

Cumulative Runoff

5.7878 in

.207 ac-ft

HYG Volume...

.207 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .12963 hrs (ID: EXIST TO POA B)

Computational Incr, Tm = .01728 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

qp = 3.76 cfs Unit peak,

.08642 hrs Unit peak time Tp =

.34568 hrs Unit receding limb, Tr =

Tb =.43210 hrs Total unit time,

File.... F:\1107537A\1107537C\Design\Existing Flow to POA C.ppw

RUNOFF CURVE NUMBER	R DATA

· ------

划		Area	Impervious Adjustment		Adjusted
Soil/Surface Description	CN	acres	%C	%UC	CN
Open Space- Good condition; grass c	80	.070			80.00
Impervious-Pavement	98	.340			98.00
COMPOSITE AREA & WEIGHTED CN>		.410			94.93 (9)

Page 4.01

Type.... Tc Calcs

Name.... EXIST TO POA C

File.... F:\1107537A\1107537C\Design\Existing Flow to POA C.ppw

TIME OF CONCENTRATION CALCULATOR _____ Segment #1: Tc: TR-55 Shallow Hydraulic Length 355.00 ft Slope .009000 ft/ft Paved Avg. Velocity 1.93 ft/sec Segment #1 Time: .0511 hrs Segment #2: Tc: TR-55 Sheet .2400 Mannings n Hydraulic Length 25.00 ft 2yr, 24hr P 3.3000 in .020000 ft/ft Slope Avg. Velocity .09 ft/sec Segment #2 Time: .0773 hrs Segment #3: Tc: TR-55 Channel .6100 sq.ft Flow Area Wetted Perimeter 1.96 ft Hydraulic Radius .31 ft Slope .032000 ft/ft
Mannings n .0130 Hydraulic Length 65.00 ft Avg. Velocity 9.42 ft/sec Segment #3 Time: .0019 hrs _____ Total Tc: .1303 hrs

S/N: 5eddc792-eed7-413c-9f7c-e419572d98eb\1

Type.... Tc Calcs

Name.... EXIST TO POA C

File.... F:\1107537A\1107537C\Design\Existing Flow to POA C.ppw

```
Tc Equations used ...
==== SCS TR-55 Sheet Flow ==============
    Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))
    Where: Tc = Time of concentration, hrs
            n = Mannings n
            Lf = Flow length, ft
            P = 2yr, 24hr Rain depth, inches
            Sf = Slope, %
==== SCS TR-55 Shallow Concentrated Flow =====================
    Unpaved surface:
    V = 16.1345 * (Sf**0.5)
    Paved surface:
    V = 20.3282 * (Sf**0.5)
    Tc = (Lf / V) / (3600sec/hr)
    Where: V = Velocity, ft/sec
            Sf = Slope, ft/ft
            Tc = Time of concentration, hrs
            Lf = Flow length, ft
```

Type.... Tc Calcs

Name.... EXIST TO POA C

File.... F:\1107537A\1107537C\Design\Existing Flow to POA C.ppw

R = Aq / Wp
V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Tc = (Lf / V) / (3600sec/hr)

Where: R = Hydraulic radius
 Aq = Flow area, sq.ft.
 Wp = Wetted perimeter, ft
 V = Velocity, ft/sec
 Sf = Slope, ft/ft
 n = Mannings n
 Tc = Time of concentration, hrs
 Lf = Flow length, ft

Type.... Unit Hyd. Summary Page 6.03 Name.... EXIST TO POA C Tag: 1 Event: 1 yr

File.... F:\1107537A\1107537C\Design\Existing Flow to POA C.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 1 year storm

Duration = 1.9999 hrs Rain Depth = Rain Dir = $F:\107537A\1107537C\Design\$ Rain Depth = 1.2500 in

Rain File -ID = - NJDEP Water Qual Unit Hyd Type = Default Curvilinear

HYG Dir = $F:\1107537A\1107537C\Design\$ HYG File - ID = Existing. HYG - EXIST TO POA C 1

Tc = .1303 hrs

Drainage Area = .410 acres Runoff CN= 95

Computational Time Increment = .01737 hrs Computed Peak Time = 1.1120 hrs

Computed Peak Flow .92 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 1.1000 hrs Peak Flow, Interpolated Output = .91 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA ______

ID:EXIST TO POA C

CN = 95

Area = .410 acres

S = .5263 in0.2S = .1053 in

Cumulative Runoff

.7842 in

.027 ac-ft

HYG Volume...

.027 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13031 hrs (ID: EXIST TO POA C) Computational Incr, Tm = .01737 hrs - 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 3.56 cfsUnit peak time Tp = .08687 hrsUnit receding limb, Tr = .34749 hrs Total unit time, Tb = .43437 hrs

Page 6.05 Type.... Unit Hyd. Summary Name.... EXIST TO POA C Tag: 2 Event: 2 yr

File.... F:\1107537A\1107537C\Design\Existing Flow to POA C.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = Rain Dir = $F:\107537A\1107537C\Design\$ Rain Depth = 3.3000 in

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F: 1107537A 1107537C \ge gn$ HYG File - ID = Existing. HYG - EXIST TO POA C 2

= .1303 hrs

Drainage Area = .410 acres Runoff CN= 95

Computational Time Increment = .01737 hrs Computed Peak Time = 12.1275 hrsComputed Peak Flow 1.28 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1500 hrs

Peak Flow, Interpolated Output = 1.23 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50% _____

DRAINAGE AREA _____

ID:EXIST TO POA C

CN = 95

Area = .410 acres

.5263 in S = 0.2S = .1053 in

Cumulative Runoff ______

2.7429 in

.094 ac-ft

HYG Volume...

.094 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13031 hrs (ID: EXIST TO POA C) Computational Incr, Tm = .01737 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp =3.56 cfs Unit peak time Tp = .08687 hrs Unit receding limb, Tr = .34749 hrs Total unit time, Tb = .43437 hrs

Type.... Unit Hyd. Summary Page 6.09

Name.... EXIST TO POA C Tag: 10 Event: 10 yr

File.... F:\1107537A\1107537C\Design\Existing Flow to POA C.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Rain Depth = 5.0000 in

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = F:\1107537A\1107537C\Design\ HYG File - ID = Existing. HYG - EXIST TO POA C 10

Tc = .1303 hrs

Drainage Area = .410 acres Runoff CN= 95

Computational Time Increment = .01737 hrs Computed Peak Time = 12.1275 hrsComputed Peak Flow = 2.00 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1500 hrs Peak Flow, Interpolated Output = 1.92 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID: EXIST TO POA C

CN = 95

Area = .410 acres

S = .5263 in0.2S = .1053 in

Cumulative Runoff

4.4195 in .151 ac-ft

HYG Volume...

.151 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13031 hrs (ID: EXIST TO POA C) Computational Incr, Tm = .01737 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

= qpUnit peak, 3.56 cfs Unit peak, qp = Unit peak time Tp = .08687 hrs Unit receding limb, Tr = Total unit time, Tb = .34749 hrs .43437 hrs

Bentley Systems, Inc.

Type.... Unit Hyd. Summary Page 6.13 Name.... EXIST TO POA C Tag: 100 Event: 100 yr

File.... F:\1107537A\1107537C\Design\Existing Flow to POA C.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = Rain Dir = $F:\107537A\1107537C\Design\$ Rain Depth = 8.3000 in

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F: 1107537A 1107537C \ge gn$

HYG File - ID = Existing. HYG - EXIST TO POA C 100

= .1303 hrs

Drainage Area = .410 acres Runoff CN= 95

Computational Time Increment = .01737 hrs Computed Peak Time = 12.1275 hrs Computed Peak Flow 3.38 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1500 hrs Peak Flow, Interpolated Output = 3.25 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA ______

ID:EXIST TO POA C

CN = 95

Area = .410 acres

.5263 in S = 0.2S = .1053 in

Cumulative Runoff _____

7.7002 in

.263 ac-ft

HYG Volume...

.263 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13031 hrs (ID: EXIST TO POA C) Computational Incr, Tm = .01737 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp =3.56 cfs Unit peak time Tp = .08687 hrs Unit receding limb, Tr = .34749 hrs .43437 hrs Total unit time, Tb =

PROPOSED BASIN AND POA C FLOW CALCULATIONS

FLOW TO BASIN POA A & POA B

Type.... Runoff CN-Area Page 4.01

Name.... DEVELOPED

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

RUNOFF CURVE NUMBER DATA

ħ		Area	Imper		Adjusted
Soil/Surface Description	CN	acres	%C	%UC	CN
Impervious-Building/Pavement/Walks/	98	4.280			98.00
Open Space + 50% Basin	80	1.070			80.00
open space was sacen					

COMPOSITE AREA & WEIGHTED CN ---> 5.350 94.40 (94)

Type.... Tc Calcs Name.... DEVELOPED

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Sheet

Mannings n .0240
Hydraulic Length 55.00 ft
2yr, 24hr P 3.3000 in
Slope .020000 ft/ft

Avg. Velocity

.66 ft/sec

Segment #1 Time: .0230 hrs ______

Segment #2: Tc: TR-55 Channel

Flow Area .6100 sq.ft
Wetted Perimeter 1.96 ft
Hydraulic Radius .31 ft

Slope .010000 ft/ft Mannings n .0130

Hydraulic Length 245.00 ft

Avg. Velocity 5.26 ft/sec

Segment #2 Time: .0129 hrs

Segment #3: Tc: TR-55 Shallow

Hydraulic Length 240.00 ft

Slope

.010000 ft/ft

Paved

Avg. Velocity 2.03 ft/sec

Segment #3 Time: .0328 hrs

Total Tc: .0687 hrs

Calculated Tc < Min.Tc:

Use Minimum Tc...

Use Tc = .0833 hrs

Type.... Tc Calcs
Name.... DEVELOPED

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

```
Tc Equations used...
Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))
   Where: Tc = Time of concentration, hrs
         n = Mannings n
         Lf = Flow length, ft
         P = 2yr, 24hr Rain depth, inches
         Sf = Slope, %
Unpaved surface:
   V = 16.1345 * (Sf**0.5)
   Paved surface:
   V = 20.3282 * (Sf**0.5)
   Tc = (Lf / V) / (3600sec/hr)
   Where: V = Velocity, ft/sec
         Sf - Slope, ft/ft
         Tc = Time of concentration, hrs
         Lf = Flow length, ft
```

Type.... Tc Calcs
Name.... DEVELOPED

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

```
R = Aq / Wp
V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Tc = (Lf / V) / (3600sec/hr)

Where: R = Hydraulic radius
    Aq = Flow area, sq.ft.
    Wp = Wetted perimeter, ft
    V = Velocity, ft/sec
    Sf = Slope, ft/ft
    n = Mannings n
    Tc = Time of concentration, hrs
    Lf = Flow length, ft
```

Type.... Unit Hyd. Summary

Page 5.03

Name.... DEVELOPED

Tag: 1

Event: 1 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 1 year storm

= 1.9999 hrs Rain Depth = = F:\1107537A\1107537C\Design\ Rain Depth = 1.2500 in Duration

Rain Dir

Rain File -ID = - NJDEP Water Qual Unit Hyd Type = Default Curvilinear

HYG Dir = $F:\1107537A\1107537C\Design\$ HYG File - ID = Develope. HYG - DEVELOPED 1

Tc (Min. Tc) = .0833 hrs

Drainage Area = 5.350 acres Runoff CN= 94

Computational Time Increment = .01111 hrs = 1.1000 hrs Computed Peak Time Computed Peak Flow = 12.19 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 1.1000 hrs Peak Flow, Interpolated Output = 12.19 cfs ______

DRAINAGE AREA

ID: DEVELOPED

CN = 94

5.350 acres Area =

.6383 in S =

.1277 in 0.2S =

Cumulative Runoff

.7154 in

13894 cu.ft

HYG Volume ...

13908 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .08333 hrs (ID: DEVELOPED) Computational Incr, Tm = .01111 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

qp =72.74 cfs Unit peak, Unit peak time Tp =.05555 hrs Unit receding limb, Tr = .22221 hrs

.27777 hrs Total unit time, Tb =

Page 5.05 Type.... Unit Hyd. Summary

Name.... DEVELOPED Event: 2 yr Tag: 2

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

= 24.0000 hrs Rain Depth = = F:\1107537A\1107537C\Design\ Rain Depth = 3.3100 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F:\1107537A\1107537C\Design\$ HYG File - ID = Develope.HYG - DEVELOPED 2

Tc (Min. Tc) = .0833 hrs

Drainage Area = 5.350 acres Runoff CN= 94

Computational Time Increment = .01111 hrs = 12.1106 hrs Computed Peak Time Computed Peak Flow 18.13 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1000 hrs Peak Flow, Interpolated Output = 17.93 cfs

DRAINAGE AREA

ID: DEVELOPED

CN = 94

Area = 5.350 acres

S = .6383 in 0.2s =.1277 in

Cumulative Runoff

2.6507 in 51478 cu.ft

HYG Volume ...

51476 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .08333 hrs (ID: DEVELOPED)Computational Incr, Tm = .01111 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

72.74 cfs Unit peak, qp =Tp =Unit peak time .05555 hrs Unit receding limb, Tr = .22221 hrs Total unit time, Tb =.27777 hrs

Page 5.09

Type.... Unit Hyd. Summary

Name.... DEVELOPED

Tag:

Event: 10 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Rain Depth = 5.0100 in = 24.0000 hrs Rain Depth = = F:\1107537A\1107537C\Design\ Duration

Rain Dir

10

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

= F:\1107537A\1107537C\Design\ HYG Dir HYG File - ID = Develope. HYG - DEVELOPED 10

Tc (Min. Tc) = .0833 hrs

Drainage Area = 5.350 acres Runoff CN= 94

Computational Time Increment = .01111 hrs = 12.1106 hrs Computed Peak Time = 28.59 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1000 hrs Peak Flow, Interpolated Output = 28.31 cfs _____

DRAINAGE AREA

ID: DEVELOPED

CN = 94

Area = 5.350 acres

.6383 in S =

0.2s =.1277 in

Cumulative Runoff

4.3178 in 83855 cu.ft

HYG Volume ...

83853 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

.08333 hrs (ID: DEVELOPED) Time Concentration, Tc = Computational Incr, Tm = .01111 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))1.6698 (solved from K = .7491) Receding/Rising, Tr/Tp =

72.74 cfs qp =Unit peak, Tp =Unit peak time .05555 hrs Unit receding limb, Tr = .22221 hrs Total unit time, Tb =.27777 hrs

9/15/2021

Page 5.13 Type.... Unit Hyd. Summary

Event: 100 yr Name.... DEVELOPED Tag: 100

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

= 24.0000 hrs Rain Depth = F:\1107537A\1107537C\Design\ Rain Depth = 8.3300 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

= F:\1107537A\1107537C\Design\ HYG Dir HYG File - ID = Develope. HYG - DEVELOPED 100

Tc (Min. Tc) = .0833 hrs

Drainage Area = 5.350 acres Runoff CN= 94

Computational Time Increment = .01111 hrs Computed Peak Time = 12.1106 hrs = 48.72 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1000 hrs Peak Flow, Interpolated Output = 48.28 cfs

DRAINAGE AREA

ID: DEVELOPED

CN = 94

Area = 5.350 acres

.6383 in S = 0.2S =.1277 in

Cumulative Runoff

7.6101 in

147793 cu.ft

HYG Volume...

147791 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .08333 hrs (ID: DEVELOPED) Computational Incr, Tm = .01111 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

qp =72.74 cfs Unit peak, Unit peak time Tp =.05555 hrs Unit receding limb, Tr = .22221 hrs Total unit time, Tb =.27777 hrs

UNDETAINED FLOW TO POA A

Typc.... Runoff CN-Area Page 4.01

Name.... UNDET A

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

RUNOFF		NUMBER	
111111	:::::	::::::	

.

			Imper	vious	
		Area	Adjust	tment	Adjusted
Soil/Surface Description	CN	acres	%C	%UC	CN
Woods-Good condition	77	1 090			77.00

COMPOSITE AREA & WEIGHTED CN ---> 1.090 77.00 (77)

9/15/2021

Page 3.01

Type.... Tc Calcs Name.... UNDET A

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Sheet

Mannings n

.4000

Hydraulic Length 150.00 ft

2yr, 24hr P 3.3000 in

Slope

.043000 ft/ft

Avg. Velocity

.12 ft/sec

Segment #1 Time: .3589 hrs

Total Tc: .3589 hrs

Type.... Tc Calcs Name.... UNDET A

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

Tc Equations used...

Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))

Where: Tc = Time of concentration, hrs

n = Mannings n

Lf = Flow length, ft

P = 2yr, 24hr Rain depth, inches

Sf = Slope, %

Type.... Unit Hyd. Summary

Page 5.03

Name.... UNDET A

Tag: 1

Event: 1 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 1 year storm

= 1.9999 hrs Rain Depth = = F:\1107537A\1107537C\Design\ Rain Depth = 1.2500 in Duration

Rain Dir

Rain File -ID = - NJDEP Water Qual Unit Hyd Type = Default Curvilinear

HYG Dir = F: 1107537A 1107537C

HYG File - ID = Develope.HYG - UNDET A 1

= .3589 hrs

Drainage Area = 1.090 acres Runoff CN= 77

Computational Time Increment = .04785 hrs Computed Peak Time = 1.3878 hrs Computed Peak Flow = .18 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 1.3500 hrs Peak Flow, Interpolated Output = .18 cfs

DRAINAGE AREA

______ ID:UNDET A

CN = 77

1.090 acres Area =

2.9870 in S =

.5974 in 0.2S =

Cumulative Runoff

.1170 in

463 cu.ft

HYG Volume...

462 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .35890 hrs (ID: UNDET A)

Computational Incr, Tm = .04785 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

qp =3.44 cfs Unit peak, Unit peak time Tp = .23927 hrsUnit receding limb, Tr = .95707 hrs

Type.... Unit Hyd. Summary Page 5.05

Name.... UNDET A Event: 2 yr Tag: 2

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

= 24.0000 hrs Rain Depth = = F:\1107537A\1107537C\Design\ Rain Depth = 3.3100 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F:\1107537A\1107537C\Design\$

HYG File - ID = Develope. HYG - UNDET A 2

= .3589 hrs

Drainage Area = 1.090 acres Runoff CN= 77

Computational Time Increment = .04785 hrs = 12.2984 hrs Computed Peak Time Computed Peak Flow 1.12 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 1.12 cfs _____

DRAINAGE AREA

ID:UNDET A

CN = 77

Area = 1.090 acres

2.9870 in S =

0.2s =.5974 in

Cumulative Runoff

1.2910 in

5108 cu.ft

HYG Volume...

Total unit time,

5112 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .35890 hrs (ID: UNDET A)Computational Incr, Tm = .04785 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Tb = 1.19634 hrs

qp =3.44 cfs Unit peak, Unit peak time Tp = .23927 hrsUnit receding limb, Tr = .95707 hrs

Type.... Unit Hyd. Summary

Page 5.08

Name.... UNDET A

Tag:

10

Event: 10 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

= 24.0000 hrs Rain Depth = = F:\1107537A\1107537C\Design\ Duration Rain Depth = 5.0100 in

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F:\1107537A\1107537C\Design\$ HYG File - ID = Develope. HYG - UNDET A 10

= .3589 hrsTC

Drainage Area = 1.090 acres Runoff CN= 77

Computational Time Increment = .04785 hrs Computed Peak Time = 12.2505 hrs Computed Peak Flow 2.34 cfs

Time Increment for HYG File .0500 hrs Peak Time, Interpolated Output = 12.2500 hrs 2.34 cfs Peak Flow, Interpolated Output =

DRAINAGE AREA

ID:UNDET A

CN = 77

1.090 acres Area =

2.9870 in S =

0.2S = .5974 in

Cumulative Runoff _____

2.6314 in

10411 cu.ft

HYG Volume ...

10419 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .35890 hrs (ID: UNDET A)Computational Incr, Tm = .04785 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K - 2/(1+(Tr/Tp))Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

3.44 cfs Unit peak, qp =.23927 hrs Unit peak time Tp =Unit receding limb, Tr = .95707 hrs Tb = 1.19634 hrsTotal unit time,

Type.... Unit Hyd. Summary

Page 5.11

Name.... UNDET A

Tag:

100

Event: 100 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

= 24.0000 hrs Rain Depth = - F:\1107537A\1107537C\Design\ Rain Depth = 8.3300 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F: 1107537A 1107537C \le gn$ HYG File - ID = Develope. HYG - UNDET A 100

= .3589 hrs

Drainage Area = 1.090 acres Runoff CN= 77

Computational Time Increment = .04785 hrs Computed Peak Time = 12.2505 hrs= 4.93 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.2500 hrs Peak Flow, Interpolated Output = 4.92 cfs

DRAINAGE AREA

ID:UNDET A

CN = 77

Area = 1.090 acres

2.9870 in S =

0.2S =.5974 in

Cumulative Runoff

5.5779 in

22070 cu.ft

HYG Volume...

Total unit time,

22087 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .35890 hrs (ID: UNDET A)Computational Incr, Tm = .04785 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Tb = 1.19634 hrs

3.44 cfs Unit peak, qp =Unit peak time Tp = .23927 hrsUnit receding limb, Tr = .95707 hrs

9/15/2021

UNDETAINED FLOW TO POA B

Type.... Runoff CN-Area Page 5.01

Name.... UNDET B

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

RUNOFF CURVE NUMBER DATA

Soil/Surface Description CN acres &C %UC CN

Open Space-Good Condition 80 .380 Impervious Adjusted CN CN 80.00

COMPOSITE AREA & WEIGHTED CN ---> .380 80.00 (80)

Page 4.01

Type.... Tc Calcs Name.... UNDET B

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Sheet

Mannings n .2400
Hydraulic Length 25.00 ft
2yr, 24hr P 3.3000 in
Slope .080000 ft/ft

Avg. Velocity

.16 ft/sec

Segment #1 Time: .0444 hrs

Total Tc: .0444 hrs

Calculated Tc < Min.Tc:

Use Minimum Tc...

Use Tc =

.0833 hrs _____ Type.... Tc Calcs Name.... UNDET B

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

Type.... Unit Hyd. Summary

Page 6.03

Name.... UNDET B

Tag: 1

Event: 1 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 1 year storm

= 1.9999 hrs Rain Depth = F:\1107537A\1107537C\Design\ Rain Depth = 1.2500 in Duration

Rain Dir

Rain File -ID = - NJDEP Water Qual Unit Hyd Type = Default Curvilinear

= F: 1107537A 1107537C DesignHYG Dir

HYG File - ID = Develope. HYG - UNDET B 1

Tc (Min. Tc) = .0833 hrs

Drainage Area = .380 acres Runoff CN= 80

Computational Time Increment = .01111 hrs = 1.1111 hrs Computed Peak Time Computed Peak Flow .20 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 1.1000 hrs

Peak Flow, Interpolated Output =

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

_____ DRAINAGE AREA

ID:UNDET B

CN = 80

.380 acres Area =

2.5000 in S =

0.2s =.5000 in

Cumulative Runoff

.1731 in

239 cu.ft

HYG Volume ...

239 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .08333 hrs (ID: UNDET B)

.01111 hrs = 0.20000 TpComputational Incr, Tm =

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

5.17 cfs qp =Unit peak,

Unit peak time Tp =.05555 hrs Unit receding limb, Tr = .22221 hrs

.27777 hrs Total unit time, Tb =

Page 6.05

Type.... Unit Hyd. Summary

Name.... UNDET B

Tag: 2

Event: 2 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

= 24.0000 hrs Rain Depth = F:\1107537A\1107537C\Design\ Duration Rain Depth = 3.3100 in

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

= F:\1107537A\1107537C\Design\ HYG Dir

HYG File - ID = Develope.HYG - UNDET B 2

Tc (Min. Tc) = .0833 hrs

Drainage Area = .380 acres Runoff CN= 80

Computational Time Increment = .01111 hrs Computed Peak Time = 12.1106 hrs

=== .78 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1000 hrs

Peak Flow, Interpolated Output =

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID:UNDET B

CN = 80

.380 acres Area =

2.5000 in S =

0.2S =.5000 in

Cumulative Runoff

1.4870 in

2051 cu.ft

HYG Volume...

2051 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

.08333 hrs (ID: UNDET B) Time Concentration, Tc =

.01111 hrs = 0.20000 TpComputational Incr, Tm =

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

qp = 5.17 cfs Unit peak,

Tp =.05555 hrs Unit peak time

Unit receding limb, Tr -.22221 hrs Tb =.27777 hrs Total unit time,

Page 6.08

Type.... Unit Hyd. Summary

Name.... UNDET B

Tag:

10

Event: 10 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

= 24.0000 hrs Rain Depth = F:\1107537A\1107537C\Design\ Rain Depth = 5.0100 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

= F:\1107537A\1107537C\Design\ HYG Dir HYG File - ID = Develope.HYG - UNDET B 10

Tc (Min. Tc) = .0833 hrs

Drainage Area = .380 acres Runoff CN= 80

Computational Time Increment = .01111 hrs = 12.1106 hrs Computed Peak Time

1.51 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1000 hrs

Peak Flow, Interpolated Output = 1.48 cfs

WARNING: The difference between calculated peak flow

and interpolated peak flow is greater than 1.50% _____

DRAINAGE AREA

ID:UNDET B

CN = 80

.380 acres Area =

2.5000 in S =

.5000 in 0.2S =

Cumulative Runoff

2.9016 in

4002 cu.ft

HYG Volume ...

4002 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .08333 hrs (ID: UNDET B)

.01111 hrs = 0.20000 TpComputational Incr, Tm =

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

5.17 cfs Unit peak, qp =

Unit peak time Tp =.05555 hrs

.22221 hrs Unit receding limb, Tr =

Tb =.27777 hrs Total unit time,

Type.... Unit Hyd. Summary

Page 6.11

Name.... UNDET B

Tag: 100 Event: 100 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

= 24.0000 hrs Rain Depth = = F:\1107537A\1107537C\Design\ Rain Depth = 8.3300 in Duration

Rain Dir

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = F: 1107537A 1107537CHYG File - ID = Develope. HYG - UNDET B 100

Tc (Min. Tc) = .0833 hrs

Drainage Area = .380 acres Runoff CN= 80

______ Computational Time Increment = .01111 hrs

Computed Peak Time = = 12.1106 hrs

Computed Peak Flow 2.99 cfs

Time Increment for HYG File = Peak Time, Interpolated Output = 12.1000 hrs Peak Flow, Interpolated Output = 2.95 cfs

_____ DRAINAGE AREA

ID:UNDET B

CN = 80

.380 acres Area =

2.5000 in S =

.5000 in 0.2s =

Cumulative Runoff

5.9350 in

8187 cu.ft

HYG Volume...

8186 cu.ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .08333 hrs (ID: UNDET B)

Computational Incr, Tm = .01111 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

qp = 5.17 cfs Unit peak,

Unit peak time Tp =.05555 hrs

Unit receding limb, Tr = .22221 hrs

Total unit time, Tb =.27777 hrs **BASIN VOLUME/INFILTRATION AREA**

Type.... Vol: Elev-Area Name.... BAS+136 CHAMB

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

Elevation (ft)	Planimeter (sq.in)	Area (sq.ft)	A1+A2+sqr(A1*A2) (sq.ft)	Volume (cu.ft)	Volume Sum (cu.ft)	Stormtech 136 Chambers	Total (cv.ft)
78.50		0	0	0	0	0	0
79.00		6410	6410	1068	1068	919	1987
80.00		7989	21555	7185	8253	4.791	13.044
81.00		10350	27432	9144	17397	8.114	25,511
82.00		12870	34761	11587	28985	10,186	39,171
83.00		15840	42988	14329	43314	11,105	54,419

POND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2-EL1) * (Area1 + Area2 + sq.rt.(Area1*Area2))

where: EL1, EL2 = Lower and upper elevations of the increment
Area1,Area2 = Areas computed for EL1, EL2, respectively
Volume = Incremental volume between EL1 and EL2

Project:

Chamber Model -Units -

Number of chambers -Voids in the stone (porosity) -Base of STONE Elevation -Amount of Stone Above Chambers -Amount of Stone Below Chambers -Area of system -

136 40 78.50 12 ft in 6 4597

☑nclude Paimete Stone in Calculations

in sf Min. Area - 4597 sf min. area

8 rows w/17 chambers each

leight of	ech SC-740 Cu Incremental Single	Incremental	Incremental	Incremental	Cumulative	440600
System	Chamber	Total Chamber	Stone	Ch & St	Chamber	Elevation
inches)	(cubic feet)	(cubic feet)	(cubic feet)	(cubic feet)	(cubic feet)	(feet)
48	0.00	0.00	153.23	153.23	11104.79	82.50
47	0.00	0.00	153.23	153.23	10951.56	82.42
46	0.00	0.00	153.23	153.23	10798.32	82.33
45	0.00	0.00	153.23	153.23	10645.09	82.25
44	0.00	0.00	153.23	153.23	10491.86	82.17
43	0.00	0.00	153.23	153.23	10338.62	82.08
42	0.00	0.00	153.23	153.23	10185.39	82.00
41	0.00	0.00	153.23	153.23	10032.16	81.92
40	0.00	0.00	153.23	153.23	9878.92	81.83
39	0.00	0.00	153.23	153.23	9725.69	81.75
38	0.00	0.00	153.23	153.23	9572.46	81.67
37	0.00	0.00	153.23	153.23	9419.22	81.58
36	0.05	7.48	150.24	157.72	9265.99	81.50
35	0.16	22.16	144.37	166.53	9108.27	81.42
34	0.28	38.34	137.90	176.24	8941.74	81.33
33	0.60	82.14	120.38	202.52	8765.50	81.25
32	0.80	109.03	109.62	218.65	8562.98	81.17
31	0.95	129.29	101.52	230.81	8344.33	81.08
30	1.07	146.13	94.78	240.91	8113.52	81.00
29	1.18	160.55	89.01	249.56	7872.61	80.92
28	1.27	172.13	84.38	256.51	7623.05	80.83
27	1.36	184.28	79.52	263.80	7366.54	80.75
26	1.45	197.76	74.13	271.89	7102.73	80.67
25	1.52	207.36	70.29	277.65	6830.85	80.58
24	1.58	215.20	67.15	282.35	6553.20	80.50
23	1.64	223.35	63.89	287.24	6270.84	80.42
22	1.70	231.13	60.78	291.91	5983.60	80.33
21	1.75	238.40	57.87	296.27	5691.69	80.25
20	1.80	245.18	55.16	300.34	5395.41	80.17
19	1.85	252.28	52.32	304.60	5095.07	80.08
18	1.89	257.46	50.25	307.71	4790.47	80.00
17	1.93	263.02	48.02	311.05	4482.76	79.92
16	1.97	268.60	45.79	314.39	4171.71	79.83
15	2.01	273.35	43.89	317.24	3857.32	79.75
14	2.04	278.12	41.99	320.10	3540.08	79.67
13	2.07	282.19	40.36	322.55	3219.97	79.58
12	2.10	286.27	38.73	324.99	2897.42	79,50
11	2.13	289.92	37.26	327.19	2572.43	79.42
10	2.15	292.92	36.06	328.99	2245.24	79.33
9	2.18	296.08	34.80	330.88	1916.25	79.25
8 7	2.20	298.98	33.64	332.62	1585.37	79.17
7	2.21	300.20	33.15	333.35	1252.75	79.08
6	0.00	0.00	153.23	153.23	919.40	79.00
5	0.00	0.00	153.23	153.23	766.17	78.92
4	0.00	0.00	153.23	153.23	612.93	78.83
6 5 4 3	0.00	0.00	153.23	153.23	459.70	78.75
2	0.00	0.00	153.23	153.23	306.47	78.67
1	0.00	0.00	153.23	153.23	153.23	78.58
					0	78.

63

BASIN OUTFLOW STRUCTURES WITH INFILTRATION

Type.... Outlet Input Data

Name.... Outlet 1

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

REQUESTED POND WS ELEVATIONS:

Min. Elev.= 78.50 ft
Increment - .10 ft
Max. Elev.= 83.00 ft

---> Forward Flow Only (UpStream to DnStream)

<--- Reverse Flow Only (DnStream to UpStream)

<---> Forward and Reverse Both Allowed

Structure	No.		Outfall	E1, ft	E2, ft
Orifice-Circular	2A	>	TW	78.500	83.000
Orifice-Circular	1A	>	TW	79.000	83.000
Weir-Rectangular	2C	>	TW	80.200	83.000
Weir-Rectangular	1C	>	TW	80.200	83.000
Weir-Rectangular	2B	>	TW	81.000	83.000
Weir-Rectangular	1B	>	TW	81.000	83.000
TW SETUP. DS Channe	1				

Name.... Outlet 1

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

OUTLET STRUCTURE INPUT DATA

Structure ID Structure Type	= 2A = Or	ifice-Circular
# of Openings	=	1
Invert Elev.	=	78.50 ft
Diameter	=	.2500 ft
Orifice Coeff.	=	.600

Structure ID	= 1A	
Structure Type	= Orifice-Circu	lar
# of Openings	= 1	
Invert Elev.	= 79.00 ft	
Diameter	= .2500 ft	
Orifice Coeff.	= .600	

Structure ID	= 2C					
Structure Type	= Weir-Rectangular					
# of Openings	= 1					
Crest Elev.	= 80.20 ft					
Weir Length	= 1.35 ft					
Weir Coeff.	= 3.330000					

Weir TW effects (Use adjustment equation)

Name.... Outlet 1

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

OUTLET STRUCTURE INPUT DATA

```
= 1C
Structure ID
```

Structure Type = Weir-Rectangular

of Openings = 1 Crest Elev.

= 80.20 ft = 1.35 ft Weir Length = 3.330000 Weir Coeff.

Weir TW effects (Use adjustment equation)

= 2BStructure ID

Structure Type = Weir-Rectangular

______ # of Openings = 1

= 81.00 ft = 1.75 ft Crest Elev. Weir Length Weir Coeff. = 3.330000

Weir TW effects (Use adjustment equation)

Structure ID = 1B

Structure Type = Weir-Rectangular ______

of Openings = 1 Crest Elev. = 81.00 ftWeir Length = 1.75 ft

Weir Coeff. = 3.330000

Weir TW effects (Use adjustment equation)

Structure ID = TW

Structure Type = TW SETUP, DS Channel

______ FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES...

Maximum Iterations= 40

Min. TW tolerance -.01 ft

.01 ft Max. TW tolerance =

.01 ft Min. HW tolerance =

.01 ft Max. HW tolerance =

.00 cfs Min. Q tolerance =

Max. Q tolerance = .00 cfs

CALCULATE INFILTRATION RATE

Infiltration Area (Sand Bed) = 6,410 SF

Permeability Rate = 2 in/hr./2 (Safety Factor) = 1 in./hr. (1 ft./12 in.)(1 hr./60 min.)(1 min./60 sec.)

= 0.000023 ft./sec.

Rate = (6,410 SF)(0.000023 ft./sec.)

= 0.15 cfs

BASIN OUTFLOW STRUCTURES WITHOUT INFILTRATION

Name.... Outlet 1

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

- Asome No Infiltration

REQUESTED POND WS ELEVATIONS:

Min. Elev.= 78.50 ft Increment = .10 ft Max. Elev.= 83.00 ft

---> Forward Flow Only (UpStream to DnStream)

<--- Reverse Flow Only (DnStream to UpStream)

<---> Forward and Reverse Both Allowed

Structure	No.		Outfall	E1, ft	E2, ft
Orifice-Circular	2A	>	TW	78.500	83.000
Orifice-Circular	1A	>	TW	79.000	83.000
Weir-Rectangular	2C	>	TW	80.200	83.000
Weir-Rectangular	1C	>	TW	80.200	83.000
Weir-Rectangular	2B	>	TW	81.000	83.000
Weir-Rectangular	1B	>	TW	81.000	83.000
TW SETUP, DS Channel					

Name.... Outlet 1

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

OUTLET STRUCTURE INPUT DATA

Structure ID Structure Type	= 2A = Or	ifice-Circular
# of Openings	=	1
Invert Elev.	=	78.50 ft
Diameter	=	.2500 ft
Orifice Coeff.	=	.600

Structure ID	= 1A	
Structure Type	= Orifice-0	
# of Openings	= 1	le .
Invert Elev.	= 79.00) ft
Diameter	2500) ft
Orifice Coeff.	= .600)

Structure TD Structure Type	= 2C = Weir-Rectangular
# of Openings	= 1
Crest Elev.	= 80.20 ft
Weir Length Weir Coeff.	= 1.35 ft $=$ 3.330000

Weir TW effects (Use adjustment equation)

```
Type.... Outlet Input Data
```

Name.... Outlet 1

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

OUTLET STRUCTURE INPUT DATA

```
Structure ID
          = 1C
Structure Type = Weir-Rectangular
______
```

= 1 # of Openings = 80.20 ft = 1.35 ft Crest Elev. Weir Length Weir Coeff. = 3.330000

Weir TW effects (Use adjustment equation)

```
Structure ID
              = 2B
```

Structure Type = Weir-Rectangular _____

of Openings = 81.00 ft = 1.75 ft Crest Elev. Weir Length

Weir Coeff. = 3.330000

Weir TW effects (Use adjustment equation)

Structure ID = 1B

Structure ID = 1BStructure Type = Weir-Rectangular______

of Openings = 1 = 81.00 ft = 1.75 ft Crest Elev. Weir Length Weir Coeff. = 3.330000

Weir TW effects (Use adjustment equation)

Structure ID - TW

Structure Type = TW SETUP, DS Channel

FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES...

Maximum Iterations= 40

.01 ft Min. TW tolerance = Max. TW tolerance = .01 ft

Min. HW tolerance = .01 ft

.01 ft Max. HW tolerance =

.00 cfs Min. Q tolerance =

.00 cfs Max. Q tolerance =

STORM SUMMARY & BASIN ROUTINGS WITH INFILTRATION

Type.... Master Network Summary

Page 2.01

Name.... Watershed

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

MASTER DESIGN STORM SUMMARY

Network Storm Collection: TR55

	Total		
	Depth	Rainfall	DWE TO
Return Event	in	Type	RNF ID
2	3.3100	Synthetic Curve	Region C 24hr
10	5.0100	Synthetic Curve	Region C 24hr
100	8.3300	Synthetic Curve	Region C 24hr
1	1.2500	Time-Depth Curve	NJDEP Water Qual

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID		Type	Return Event	HYG Vol	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage cu.ft	
BAS+136 C	HAMBIN	POND	2	51477		12.1000	17.93			
BAS+136 C	HAMBIN	POND	10	83854		12.1000	28.31			
BAS+136 C	HAMBIN	POND	100	147792		12.1000	48.28			
BAS+136 C	HAMBIN	POND	1	14288		1.1000	12.19		-	
										\
BAS+136 C	HAMBOUT	POND	2	38882		12.4000	3.91	80.74	22235	B 1
BAS+136 C	HAMBOUT	POND	10	69257		12.2000	13.15	81.39	30887	- Dasih
BAS+136 C	HAMBOUT	POND	100	131116		12.2000	30.09	82.12	41050	Outflow
BAS+136 C	CHAMBOUT	POND	1	8972		1.8000	.48	79.91	12020	-011100
									-	<i>'</i>
DEVELOPED)	AREA	2	51477		12.1000	17.93			
DEVELOPED)	AREA	10	83854		12.1000	28.31			
DEVELOPED)	AREA	100	147792		12.1000	48.28			
DEVELOPED)	AREA	1	14288		1.1000	12.19			

Type.... Master Network Summary

Page 2.02

Name.... Watershed

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Туре	Return Event	HYG Vol cu.ft	Qpeak Trun hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage cu.ft
*OUTFALL *OUTFALL *OUTFALL *OUTFALL	JCT JCT JCT JCT	2 10 100 1	46042 83677 161388 9676	12.3000 12.2000 12.2000 1.4000	5.13 16.06 36.15 .68	} Tot	A Flow
UNDET A UNDET A UNDET A	AREA AREA AREA AREA	10 100	5112 10420 22088 462	12.3000 12.3000 12.3000 1.4000	1.12 2.31 4.82 .18		
UNDET B UNDET B UNDET B	AREA AREA AREA AREA	10 100	2051 4002 8186 243	12.1000 12.1000 12.1000 1.1000	.76 1.48 2.95 .19		

Page 14.22 Type.... Pond Routing Summary

Event: 1 yr Name.... BAS+136 CHAMBOUT Tag: 1

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

Storm... NJDEP Water Qual 1

LEVEL POOL ROUTING SUMMARY

= F:\1107537A\1107537C\Design\

Inflow HYG file = work pad.hyg - BAS+136 CHAMBIN 1

Outflow HYG file = work_pad.hyg - BAS+136 CHAMBOUT 1

Data = BAS+136 CHAMB Pond Node

Pond Volume Data = BAS+136 CHAMB

Pond Outlet Data = Outlet 1

Infiltration = .15 cfs

INITIAL CONDITIONS

Starting WS Elev = 78.50 ft
Starting Volume = 0 cu.
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs 0 cu.ft .00 cfs

Starting Total Qout= .00 cfs

.1000 hrs Time Increment

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====					=====	======	
Peak	Inflow	=	12.19	cfs	at	1.1000	hrs
Peak	Outflow	=	.48	cfs	at	1.8000	hrs
Peak	Infiltration	=	.15	cfs	at	.9000	hrs
Peak	Elevation	=	79.91	ft			
Peak	Storage =		12020	cu.ft			

MASS BALANCE (cu.ft)

+ Initial Vol = 0 + HYG Vol IN = 14288 5309 - Infiltration =

8972 - HYG Vol OUT =

- Retained Vol =

cu.ft (.000% of Inflow Volume) Unrouted Vol = -

Page 14.24 Type.... Pond Routing Summary

Name.... BAS+136 CHAMBOUT Tag: 2 Event: 2 yr

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

Storm... Region C 24hr Tag:

LEVEL POOL ROUTING SUMMARY

HYG Dir = $F:\1107537A\1107537C\Design\$

Inflow HYG file = work_pad.hyg - BAS+136 CHAMBIN 2

Outflow HYC file = work_pad.hyg - BAS+136 CHAMBOUT 2

Data = BAS+136 CHAMBPond Node

Pond Volume Data = BAS+136 CHAMB

Pond Outlet Data = Outlet 1

Infiltration = .15 cfs

INITIAL CONDITIONS

Starting WS Elev = 78.50 ft Starting Volume = 0 cu. Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs 0 cu.ft .00 cfs .00 cfs

.00 cfs Starting Total Qout=

= .1000 hrs Time Increment

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak	Inflow	=	17.93	cfs	at	12.1000	hrs
Peak	Outflow	=	3.91	cfs	at	12.4000	hrs
Peak	Infiltration		10 7000	cfs	at	8.0000	
 Peak	Elevation	=	80.74				
Peak	Storage =		22235	cu.ft			

MASS BALANCE (cu.ft)

+ Initial Vol = 0

+ HYG Vol IN = 51477

12589 - Infiltration =

38882 - HYG Vol OUT =

- Retained Vol =

0 cu.ft (.000% of Inflow Volume) Unrouted Vol =

Type.... Pond Routing Summary

Page 14.27

Name.... BAS+136 CHAMBOUT Tag:

10

Event: 10 yr

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

Storm... Region C 24hr Tag: 10

LEVEL POOL ROUTING SUMMARY

= F:\1107537A\1107537C\Design\

Inflow HYG file = work pad.hyg - BAS+136 CHAMBIN 10

Outflow HYG file = work_pad.hyg - BAS+136 CHAMBOUT 10

Pond Node Data = BAS+136 CHAMB

Pond Volume Data = BAS+136 CHAMB

Pond Outlet Data = Outlet 1

Infiltration = .15 cfs

INITIAL CONDITIONS

Starting WS Elev = 78.50 ft
Starting Volume = 0 cu.
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs 0 cu.ft .00 cfs .00 cfs

Starting Total Qout= .00 cfs

.1000 hrs Time Increment

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

	====	=======	=====		=======	====
Inflow	=	28.31	cfs	at	12.1000	hrs
Outflow	=	13.15	cfs	at	12.2000	hrs
Infiltration	=	.15	cfs	at	5.8000	hrs
Elevation	=	81.39	ft			
	Inflow Outflow Infiltration	Outflow = Infiltration =	Outflow = 13.15 Infiltration = .15	Outflow = 13.15 cfs Infiltration = .15 cfs	Outflow = 13.15 cfs at Infiltration = .15 cfs at	Outflow = 13.15 cfs at 12.2000 Infiltration = .15 cfs at 5.8000

30887 cu.ft Peak Storage =

MASS BALANCE (cu.ft)

_____ + Initial Vol = 0

+ HYG Vol IN = 83854 14591 - Infiltration =

69257 - HYG Vol OUT =

- Retained Vol =

cu.ft (.000% of Inflow Volume) Unrouted Vol = -

Type.... Pond Routing Summary

Page 14.30

Name.... BAS+136 CHAMBOUT Tag: 100

Event: 100 yr

Storm... Region C 24hr Tag: 100

File.... F:\1107537A\1107537C\Design\Developed Basin With Infiltration.ppw

LEVEL POOL ROUTING SUMMARY

HYG Dir = $F:\1107537A\1107537C\Design\$

Inflow HYG file = work_pad.hyg - BAS+136 CHAMBIN 100
Outflow HYG file = work_pad.hyg - BAS+136 CHAMBOUT 100

Pond Node Data = BAS+136 CHAMB

Pond Volume Data = BAS+136 CHAMB

Pond Outlet Data = Outlet 1

Infiltration =

.15 cfs

INITIAL CONDITIONS

Starting WS Elev = 78.50 ft
Starting Volume = 0 cu.
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs

0 cu.ft .00 cfs

.00 cfs Starting Total Qout=

.1000 hrs Time Increment

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====				======	=====		====
Peak	Inflow	=	48.28	cfs	at	12.1000	hrs
Peak	Outflow	=	30.09	cfs	at	12.2000	hrs
Peak	Infiltration	=	.15	cfs	at	3.3000	hrs
Peak	Elevation	=	82.12	ft			
Peak	Storage =		41050	cu.ft			

MASS BALANCE (cu.ft)

+ Initial Vol = 0

0 147792 infiltration = 16670 - HYG Vol OUT = 131116 - Retained Vol =

Unrouted Vol = -

cu.ft (.000% of Inflow Volume)

STORM SUMMARY & BASIN ROUTINGS WITHOUT INFILTRATION

Type.... Master Network Summary

Page 2.01

Name.... Watershed

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

MASTER DESIGN STORM SUMMARY

Network Storm Collection: TR55

Return Event	Total Depth in	Rainfall Type	RNF ID
2	3.3100	Synthetic Curve	Region C 24hr
10	5.0100	Synthetic Curve	Region C 24hr
100	8.3300	Synthetic Curve	Region C 24hr
1	1.2500	Time-Depth Curve	NJDEP Water Qual

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

								Max	
		Return	HYC Vol		Qpeak	Qpeak	Max WSEL	Pond Storage	
Node ID	Туре	e Event	cu.ft	Trun	hrs	cfs	ft	cu.ft	
BAS+136 CHAI	MBIN PONI	2	51477		12.1000	17.93			
BAS+136 CHAI	MBIN PONI	10	83854		12.1000	28.31			
BAS+136 CHAI	MBIN PONI	100	147792		12.1000	48.28			
BAS+136 CHAI	MBIN PONI) 1	14288		1.1000	12.19			
BAS+136 CHAI	MBOUT PONI	2	51402		12.3000	4.64	80.82	23256	
BAS+136 CHAI	MBOUT PONI	10	83778		12.2000	14.43	81.45	31714 🧶	Bacil
BAS+136 CHAI	MBOUT PONI	100	147716		12.2000	30.35	82.13	41208	0 10
BAS+136 CHAI	MBOUT PONI) 1	14213		1.8000	.49	79.96	12583	DOMION
DEVELOPED	AREA	A 2	51477		12.1000	17.93			
DEVELOPED	AREA	10	83854		12.1000	28.31			
DEVELOPED	AREA	100	147792		12.1000	48.28			
DEVELOPED	AREA	A 1	14288		1.1000	12.19			

Type.... Master Network Summary

Name.... Watershed

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Туре	Return Event	HYG Vol cu.ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage cu.ft
*OUTFALL	JCT	2	58564		12.3000	6.01 17.34) _ , ,	
*OUTFALL	JCT JCT	10 100	98200 177990		12.2000	36.41	> Total	Flow
*OUTFALL	JCT	1	14918		1.4000	.69) C1	40A A
UNDET A	AREA AREA	2 10	5112 10420		12.3000 12.3000	1.12		
UNDET A	AREA		22088		12.3000	4.82		
UNDET A	AREA	1	462		1.4000	.18		
UNDET B	AREA	2	2051		12.1000	.76		
UNDET B	AREA		4002		12.1000	1.48 2.95		
UNDET B UNDET B	AREA AREA		8186 243		1.1000	.19		

Page 14.15 Type.... Pond Routing Summary

Event: 1 yr Name.... BAS+136 CHAMBOUT Tag: 1

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

Storm... NJDEP Water Qual Tag:

LEVEL POOL ROUTING SUMMARY

= F:\1107537A\1107537C\Design\

Inflow HYG file = work pad.hyg - BAS+136 CHAMBIN 1

Outflow HYG file = work_pad.hyg - BAS+136 CHAMBOUT 1

Data = BAS+136 CHAMB Pond Node

Pond Volume Data = BAS+136 CHAMB

Pond Outlet Data = Outlet 1

No Infiltration

INITIAL CONDITIONS

Starting WS Elev = 78.50 ft
Starting Volume = 0 cu.
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs 0 cu.ft .00 cfs

Starting Total Qout= .00 cfs

Time Increment .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====		======	=====	=====			====
Peak	Inflow	=	12.19	cfs	at	1.1000	hrs
Peak	Outflow	=	.49	cfs	at	1.8000	hrs
Peak	Elevation	=	79.96	ft			
Dook	Storago -		12583	CII f	i-		

Peak Storage = 12583 cu.ft _____

MASS BALANCE (cu.ft) _____

0 + Initial Vol =

+ HYG Vol IN =

- Infiltration = 0

14213 - HYG Vol OUT =

75 - Retained Vol =

cu.ft (.000% of Inflow Volume) Unrouted Vol = -

Page 14.18

Type.... Pond Routing Summary

Name.... BAS+136 CHAMBOUT Tag:

2

Event: 2 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

Storm... Region C 24hr Tag:

LEVEL POOL ROUTING SUMMARY

HYG Dir = $F:\1107537A\1107537C\Design\$

Inflow HYG file = work_pad.hyg - BAS+136 CHAMBIN 2
Outflow HYG file = work_pad.hyg - BAS+136 CHAMBOUT 2

Pond Node Data = BAS+136 CHAMB Pond Volume Data = BAS+136 CHAMB Pond Outlet Data = Outlet 1

No Infiltration

INITIAL CONDITIONS

Starting WS Elev = 78.50 ft
Starting Volume = 0 cu.ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

===============	=====	=	======	=====		====
Peak Inflow	=	17.93	cfs	at	12.1000	hrs
Peak Outflow	=	4.64	cfs	at	12.3000	hrs
Peak Elevation	=	80.82	ft			
Peak Storage =		23256	cu.ft			

MASS BALANCE (cu.ft)

+ Initial Vol = 0 + HYG Vol IN = 51477 - Infiltration = 0 - HYG Vol OUT = 51402 - Retained Vol = 75

Unrouted Vol = 0 cu.ft (.000% of Inflow Volume)

Type.... Pond Routing Summary

Page 14.22

Name.... BAS+136 CHAMBOUT Tag:

10

Event: 10 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

Storm... Region C 24hr Tag:

10

LEVEL POOL ROUTING SUMMARY

HYG Dir = $F: 1107537A 1107537C \ge gn$

Inflow HYG file = work_pad.hyg - BAS+136 CHAMBIN 10

Outflow HYG file = work_pad.hyg - BAS+136 CHAMBOUT 10

Pond Node Data = BAS+136 CHAMB

Pond Volume Data = BAS+136 CHAMB

Pond Outlet Data = Outlet 1

No Infiltration

INITIAL CONDITIONS

Starting WS Elev = 78.50 ft
Starting Volume = 0 cu.ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow	=	28.31	cfs	at	12.1000	hrs
Peak Outflow	=	14.43	cfs	at	12.2000	hrs
Peak Elevation	=	81.45	ft			
Peak Storage =		31714	cu.ft			

MASS BALANCE (cu.ft)

+ Initial Vol = 0 + HYG Vol IN = 83854 - Infiltration = 0 - HYG Vol OUT = 83778 - Retained Vol = 76

Unrouted Vol = -

cu.ft (.000% of Inflow Volume)

Type.... Pond Routing Summary

Page 14.26

Name.... BAS+136 CHAMBOUT Tag: 100

Event: 100 yr

File.... F:\1107537A\1107537C\Design\Developed Basin Inflow.ppw

Storm... Region C 24hr Tag: 100

LEVEL POOL ROUTING SUMMARY

= F: 1107537A 1107537C Design

Inflow HYG file = work_pad.hyg - BAS+136 CHAMBIN 100 Outflow HYG file = work_pad.hyg - BAS+136 CHAMBOUT 100

Pond Node Data = BAS+136 CHAMBPond Volume Data = BAS+136 CHAMB Pond Outlet Data = Outlet 1

No Infiltration

INITIAL CONDITIONS

Starting	WS Elev	=	78.50	ft
Starting	Volume	=	0	cu.ft
Starting	Outflow	=	.00	cfs
Starting	Infiltr.	==	.00	cfs
Starting	Total Qou	it=	.00	cfs
Time Inc	rement	===	1000	hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak I	nflow	=	48.28	cfs	at	12.1000	hrs
Peak O	utflow	=	30.35	cfs	at	12.2000	hrs
Peak E	levation		82.13	ft			
Peak S	torage =		41208	cu.ft			

MASS BALANCE (cu.ft)

+	Initial	Vol	=	0
+	HYG Vol	IN	-	147792
_	Infiltra	tion	_	0
_	HYG Vol	OUT	=	147716
-	Retained	Vol	=	76

cu.ft (.000% of Inflow Volume) Unrouted Vol = -

PROPOSED FLOW TO POA C

Type.... Runoff CN-Area Name.... PROP TO POA C

File.... F:\1107537A\1107537C\Design\Proposed Flow to POA C.ppw

RUNOFF	CURVE	NUMBER	DATA		

		Area	Imper Adjus		Adjusted
Soil/Surface Description	CN	acres	%C	%UC	CN
Open Space- Good condition; grass	c 80	.020			80.00
Impervious-Pavement	98	.260			98.00
COMPOSITE AREA & WEIGHTED CN>		280			96.71 (97

Type.... Tc Calcs
Name.... PROP TO POA C

File.... F:\1107537A\1107537C\Design\Proposed Flow to POA C.ppw

TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: TR-55 Shallow Hydraulic Length 270.00 ft .015000 ft/ft Slope Paved Avg. Velocity 2.49 ft/sec Segment #1 Time: .0301 hrs Segment #2: Tc: TR-55 Sheet Mannings n .2400 Hydraulic Length 25.00 ft 2yr, 24hr P 3.3000 in Slope .016000 ft/ft Avg. Velocity .08 ft/sec Segment #2 Time: .0845 hrs Segment #3: Tc: TR-55 Channel .6100 sq.ft Flow Area Wetted Perimeter 1.96 ft Hydraulic Radius .31 ft
Slope .010000 ft/ft
Mannings n .0130 Hydraulic Length 85.00 ft 5.26 ft/sec Avg. Velocity Segment #3 Time: .0045 hrs Total Tc: .1191 hrs Type.... Tc Calcs
Name.... PROP TO POA C

File.... F:\1107537A\1107537C\Design\Proposed Flow to POA C.ppw

```
Tc Equations used ...
Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))
   Where: Tc = Time of concentration, hrs
         n = Mannings n
         Lf = Flow length, ft
         P = 2yr, 24hr Rain depth, inches
         Sf = Slope, %
Unpaved surface:
   V = 16.1345 * (Sf**0.5)
   Paved surface:
   V = 20.3282 * (Sf**0.5)
   Tc = (Lf / V) / (3600sec/hr)
   Where: V = Velocity, ft/sec
         Sf = Slope, ft/ft
         Tc = Time of concentration, hrs
         Lf = Flow length, ft
```

Type.... Tc Calcs

Name.... PROP TO POA C

File.... F:\1107537A\1107537C\Design\Proposed Flow to POA C.ppw

R = Aq / Wp
V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Tc - (Lf / V) / (3600sec/hr)

Where: R = Hydraulic radius
 Aq = Flow area, sq.ft.
 Wp = Wetted perimeter, ft
 V = Velocity, ft/sec
 Sf = Slope, ft/ft
 n = Mannings n
 Tc = Time of concentration, hrs
 Lf = Flow length, ft

Page 4.03

Type.... Unit Hyd. Summary

Name.... PROP TO POA C Tag: 1 Event: 1 yr

File.... F:\1107537A\1107537C\Design\Proposed Flow to POA C.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 1 year storm

Duration = 1.9999 hrs Rain Depth = Rain Dir = $F:\107537A\1107537C\Design\$ Rain Depth = 1.2500 in

Rain File -ID = - NJDEP Water Qual Unit Hyd Type = Default Curvilinear

HYG Dir $= F: 1107537A 1107537C \ge gn$ HYG File - ID = Proposed. HYG - PROP TO POA C 1

= .1191 hrs

Drainage Area = .280 acres Runoff CN= 97

Computational Time Increment = .01588 hrs Computed Peak Time = 1.1114 hrs

Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 1.1000 hrs Peak Flow, Interpolated Output = .74 cfs

DRAINAGE AREA

_____ ID: PROP TO POA C

CN = 97

.280 acres Area =

S = .3093 in 0.2S - .0619 in

Cumulative Runoff

.9427 in

.022 ac-ft

HYG Volume...

.022 ac-ft (area under HYG curve)

Page 6.03

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .11908 hrs (ID: PROP TO POA C)

Computational Incr, Tm = .01588 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp =2.66 cfs Unit peak time Tp = .07939 hrs .31755 hrs Unit receding limb, Tr = Total unit time, Tb = .39694 hrs

Page 6.05 Type.... Unit Hyd. Summary Name.... PROP TO POA C Tag: 2 Event: 2 yr

File.... F:\1107537A\1107537C\Design\Proposed Flow to POA C.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = Rain Dir = $F:\107537A\1107537C\Design\$ Rain Depth = 3.3000 in

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

 $= F: 1107537A 1107537C \ge gn$ HYG Dir HYG File - ID = Proposed. HYG - PROP TO POA C 2

= .1191 hrs

Drainage Area = .280 acres Runoff CN= 97

____________ Computational Time Increment = .01588 hrs Computed Peak Time = 12.1305 hrs

Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1000 hrs

Peak Flow, Interpolated Output = .88 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

_____ ID: PROP TO POA C

CN = 97

Area = .280 acres

.3093 in S = 0.2S =.0619 in

Cumulative Runoff

2.9558 in .069 ac-ft

HYG Volume...

.069 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .11908 hrs (ID: PROP TO POA C) Computational Incr, Tm = .01588 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp =2.66 cfs Unit peak time Tp = .07939 hrs Unit receding limb, Tr = .31755 hrs Total unit time, Tb = .39694 hrs Type.... Unit Hyd. Summary Page 6.09 Name.... PROP TO POA C Taq: Event: 10 yr 10

File.... F:\1107537A\1107537C\Design\Proposed Flow to POA C.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = Rain Dir = $F:\107537A\1107537C\Design\$ Rain Depth = 5.0000 in

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = $F: 1107537A 1107537C \ge gn$ HYG File - ID = Proposed. HYG - PROP TO POA C 10

= .1191 hrs

Drainage Area = .280 acres Runoff CN= 97

Computational Time Increment = .01588 hrs Computed Peak Time = 12.1305 hrs

Computed Peak Flow 1.43 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1000 hrs

Peak Flow, Interpolated Output = 1.36 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA ______

ID: PROP TO POA C

CN = 97

Area -.280 acres

.3093 in S = 0.2S = .0619 in

Cumulative Runoff

4.6471 in

.108 ac-ft

HYG Volume...

.108 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .11908 hrs (ID: PROP TO POA C) Computational Incr, Tm - .01588 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp =Unit peak time Tp =Unit peak, 2.66 cfs .07939 hrs Unit receding limb, Tr = .31755 hrs Total unit time, Tb = .39694 hrs

Type.... Unit Hyd. Summary Page 6.13
Name.... PROP TO POA C Tag: 100 Event: 100 yr

File.... F:\1107537A\1107537C\Design\Proposed Flow to POA C.ppw

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 8.3000 in

Rain Dir = $F:\1107537A\1107537C\Design\$

Rain File -ID = - Region C 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = F:\1107537A\1107537C\Design\
HYG File - ID = Proposed.HYG - PROP TO POA C 100

Tc = .1191 hrs

Drainage Area = .280 acres Runoff CN= 97

Computational Time Increment = .01588 hrs
Computed Peak Time = 12.1305 hrs

Computed Peak Flow = 2.39 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.1000 hrs

Peak Flow, Interpolated Output = 2.28 cfs WARNING: The difference between calculated peak flow

and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID: PROP TO POA C

CN = 97

Area = .280 acres

S = .3093 in0.2S = .0619 in

Cumulative Runoff

7.9401 in

.185 ac-ft

HYG Volume...

.185 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .11908 hrs (ID: PROP TO POA C)

Computational Incr, Tm = .01588 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 2.66 cfsUnit peak time Tp = .07939 hrsUnit receding limb, Tr = .31755 hrsTotal unit time, Tb = .39694 hrs

GROUNDWATER RECHARGE CALCULATIONS

New Jersey Groundwater	ey afer	Annual Groundwater Recharge Analysis (based on GSR-32)	echarge A) siskler	based on GSF	3-32)		Project Name:	Nexus Apartment Site Plan	tment Site	Plan
Recharge Spreadsheet Version 2.0	leet	Select Township 👃	Average Annual P (in)	Climatic Factor				Description:	Calc Annual Recharge Deficit	I Recharg	e Deficit
November	50003	MERCER CO., LAWRENCE TWP	44.9	1.43				Analysis Date:	09/08/21		
		Pre-Developed Conditions	nditions					Post-Developed Conditions	d Conditions		
Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)	Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)
1	69.0	Open space	Udorthents	0.0	•	•	4.54	Impervious areas	Udorthents		
2	2.84	Woods	Elkton	0.0	•	2	1.15	Open space	Udorthents	200	
3	2.16	Impervious areas	Udorthents	0.0	•					25	
4		*				9 4					
5											
9						ی رو					
7	0					7					
8	-					- x					
6											
10						10					
11						1					
12	0					12	1				
13	0					13	0				
14	0					14					
15	0					15	7				
Totol I	6.7			l otal Annual	l otal Annual					Total	Total
	;			Recharge (in)	Recharge (cu-ft)	Total =	5.7			Recharge (in)	Recharge (cu.ft)
				0.0	•	Annual	Recharge	Annual Recharge Requirements Calculation	on ↓	0.0	

Procedure to fill the Pre-Development and Post-Development Conditions Tables

197,762

Impervious Area (sq.ft) (cubic feet)

100%

Ê Ê

DRWC= 0.00 EDRWC= 0.00

Recharge Efficiency Parameters Calculations (area averages)

E E

RWC= 0.00 ERWC = 0.00

% of Pre-Developed Annual Recharge to Preserve = Post-Development Annual Recharge Deficit=

For each land segment, first enter the area, then select TR-55 Land Cover, then select Soil. Start from the top of the table and proceed downward. Don't leave blank rows (with A=0) in between your segment entries. Rows with A=0 will not be displayed or used in calculations. For impervious areas outside of standard lots select "Impervious Areas" as the Land Cover. Soil type for impervious areas are only required if an infiltration facility will be built within these areas.

WATER QUALITY CALCULATIONS

WATER QUALITY CALCULATIONS

Water quality treatment (80% TSS removal) is provided for the parking lot run-off by eleven (11) Filterra HC units as manufactured by Contech Engineered Solutions. These units were sized based on the attached drainage area plan and sizing table from the manufacturer and the DEP approval letter (dated 2/12/21) confirming the 80% TSS removal rates.

The extended detention basin has a maximum detention time of 7 hours. This does not provide any additional TSS removal per the NJDEP BMP manual per Chapter 11.2 – see attached calculations.

FILTERRA DRAINAGE AREA PLAN

FLM: INSERT ONE (1) PLAN POCKET IN PLACE OF THIS SHEET

Filterra HC Standard Flow Based Sizing

The sizing for the Filterra HC system under NJDEP regulations is based on the methodolgy outlined in Chapter 5 of the NJDEP BMP Manual. The NRCS Runoff Equation in the handbook is utilized to determine a water quality flow rate for the drainage area in question. To validate the sizing, the following parameters were

(As outlined in the NJDEP SWM Handbook)

Sample Parameters:

Design Storm =

1.25" in 2 hrs

300"/hr

Filterra HC Media Flow Rate = Site Drainage Area =

0.319 ac

Percent Impervious =

100%

Time of Concentration = Allowable Ponding in Filterra HC = 10 min

13x7

Filterra HC Model Size Analyzed =

(Treats 0.632 cfs at 300"/hr)

Design Summary:

Using the NRCS Method, the required treatment flow rate for this drainage area is 0.82 cfs. Utilizing the HydroCAD Software, a matching hydrograph can be derived (Figure 1).

This storm can then be routed through an appropriately sized Filterra HC unit, for this example, a 13x7. Because the Filterra HC system can provide up to 9" of ponding, some flow attentuation is possible and the Filterra HC system is able to accommodate a portion of the water quality volume in the head space and release it at the system's design flow rate. The hydrograph in Figure 2 illustrates this concept. In this example, the 69 of stored represents the upper portion of the hydrograph between 0.63 cfs and 0.82 cfs.

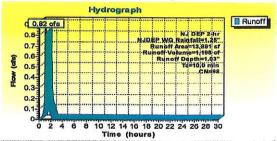


Figure 1. Inflow rate during the 1,25" in 2 hrs, NJDEP WQ Storm event.

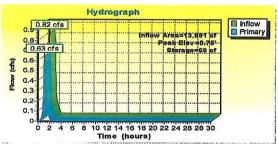


Figure 2. Inflow rate during the WQ Storm Event compared with the Filterra outflow rate, accounting for 9" ponding within the unit.

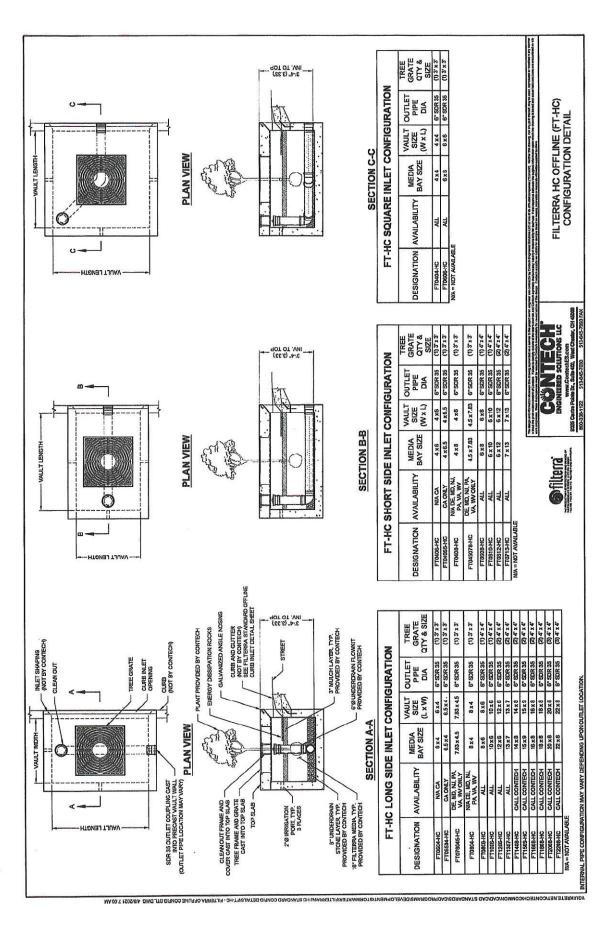

This approach is scalable and can be completed for all Filterra HC sizes. Table 1 identifies the allowable impervious drainage area to each Filterra HC unit based on this methodology. Additionally, for drainage areas that are not fully impervious, a new table can be generated based on site specific constraints. Please contact your Contech Representative for more information.

Table 1. Filterra HC Sizing based on the New Jersey BMP Manual

System Size	Treatment Flow Rate at 300"/hr	Allowable Impervious Drainage Area w/ 9" of Ponding (CN=98)	Outlet Pipe Size
(ft)	(cfs)	(ac)	(in)
4x4	0,111	0.056	6" SDR-35 PVC
4x6 / 6x4	0.167	0.084	6" SDR-35 PVC
4.5x7.83 / 7.83x4.5	0.245	0.123	6" SDR-35 PVC
6x6	0.25	0.126	6" SDR-35 PVC
6x8 / 8x6	0.333	0.168	6" SDR-35 PVC
6x10 / 10x6	0.417	0.210	6" SDR-35 PVC
6x12 / 12x6	0,500	0.252	6" SDR-35 PVC
7x13 / 13x7	0.632	0.319	6" SDR-35 PVC
14x8	0.778	0.392	6" SDR-35 PVC
16x8	0.889	0.449	6" SDR-35 PVC
18x8	1,000	0,505	6" SDR-35 PVC
20x8	1.111	0.561	6" SDR-35 PVC
22x8	1.222	0.617	6" SDR-35 PVC

Notes:

- 1. Boxes are standard depth from rim to outlet: 3.33' for Standard Offline
- 2. Vault sizes 8x14 and larger available on case-by-case basis. Please contact Contech for individual project design assistance.
- 3. A standard PVC pipe coupling is cast into the wall for easy connection to discharge piping
- 4. Dimensions shown are Internal.
- 5. Contact Contech for site specific sizing or other box configurations

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF WATER QUALITY
Bureau of Stormwater Permitting
401 East State Street
P.O. Box 420 Mail Code 401-02B
Trenton, NJ 08625-0420
Tel. (609) 633-7021 • Fax (609) 777-0432
www.nj.gov/dep/dwg/bnpc_home.htm

SHAWN M. LATOURETTI Acting Commissioner

PHILIP D. MURPHY
Governor

SHEILA Y. OLIVER

Lt. Governor

February 12, 2021

Derek M. Berg
Director – Stormwater Regulatory Management - East
Contech Engineered Solutions LLC
71 US Route 1, Suite F
Scarborough, ME 04074

Re: MTD Lab Certification

Filterra® HC Bioretention System Off-line Installation Approved

TSS Removal Rate 80%

Dear Mr. Berg:

The Stormwater Management rules under N.J.A.C. 7:8-5.5(b) and 5.7(c) allow the use of manufactured treatment devices (MTDs) for compliance with the design and performance standards at N.J.A.C. 7:8-5 if the pollutant removal rates have been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and have been certified by the New Jersey Department of Environmental Protection (NJDEP). Contech Engineered Solutions LLC has requested a Laboratory Certification for the Filterra® HC Bioretention System (Filterra® HC.)

The project falls under the "Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advance Technology" dated January 25, 2013. The applicable protocol is the "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device" dated January 25, 2013.

NJCAT verification documents submitted to the NJDEP indicate that the requirements of the aforementioned protocol have been met or exceeded. The NJCAT letter also included a recommended certification TSS removal rate and the required maintenance plan. The NJCAT Verification Report with the Verification Appendix (dated January 2021) for this device is published online at http://www.njcat.org/uploads/newDocs/NJCATFilterraTechnology-verificationReportFinal..pdf.

The NJDEP certifies the use of the Filterra® HC stormwater treatment unit by Contech Engineered Solutions LLC at a TSS removal rate of 80% when designed, operated, and maintained in accordance with the information provided in the Verification Appendix and the following conditions:

- 1. The maximum treatment flow rate (MTFR) for the manufactured treatment device (MTD) is calculated using the New Jersey Water Quality Design Storm (1.25 inches in 2 hrs) in N.J.A.C. 7:8-5.5. The MTFR is calculated based on a verified loading rate of 3.12 gpm/ft² of effective filtration treatment area.
- 2. The Filterra® HC stormwater treatment unit shall be installed using the same configuration reviewed by NJCAT, and sized in accordance with the criteria specified in item 7 below.
- 3. This device cannot be used in series with another MTD or a media filter (such as a sand filter) to achieve an enhanced removal rate for total suspended solids (TSS) removal under N.J.A.C. 7:8-5.5.
- 4. Additional design criteria for MTDs can be found in the New Jersey Stormwater Best Management Practices (NJ Stormwater BMP) Manual, which can be found online at www.njstormwater.org.
- 5. The maintenance plan for a site using this device shall incorporate, at a minimum, the maintenance requirements for the Filterra® HC. A copy of the maintenance plan is attached to this certification. However, it is recommended to review the maintenance website at https://www.conteches.com/Portals/0/Documents/Maintenance%20Guides/Filterra%20HC%20OM%20Packet.pdf for any changes to the maintenance requirements.
- 6. For an MTD to be considered "green infrastructure" (GI) in accordance with the March 2, 2020 amendments to the Stormwater Management rules at N.J.A.C. 7:8, the MTD must meet the GI definition noted at amended N.J.A.C. 7:8-1.2. Specifically, the MTD shall (1) treat stormwater runoff through infiltration into subsoil; and/or (2) treat stormwater runoff through filtration by vegetation or soil; or (3) store stormwater runoff for reuse.

The Filterra® HC filters stormwater runoff through an engineered biofiltration soil media and, thus, meets the definition of GI. Filterra® HC can be configured with or without a precast vault. Installations that will not include a precast vault will additionally need to comply the NJDEP Stormwater BMP Manual conditions regarding separation from the seasonal high water table and, if infiltration is proposed as an outlet, minimum vertical saturated hydraulic conductivity of the subsoil. Installations without a precast vault that do not rely on infiltration are required to maintain at least a one-foot separation from the seasonal high water table measured from the lowest point of the system. Installations without a precast vault that utilize infiltration are required to have the most hydraulically restrictive soil layer below the MTD meet the minimum tested vertical saturated hydraulic conductivity of one inch per hour and have at least two feet of separation from the seasonal high water table measured from the lowest point of the system.

7. Sizing Requirement:

The example below demonstrates the sizing procedure for the Filterra® HC:

Example:

A 0.25-acre impervious site is to be treated to 80% TSS removal using the

Filterra® HC. The impervious site runoff (Q) based on the New Jersey

Water Quality Design Storm was determined to be 0.79 cfs.

The selection of the appropriate model of Filterra[®] HC is based upon both the maximum inflow drainage area and the MTFR. It is necessary to calculate the required model using both methods and to use the largest model determined by the two methods.

Inflow Drainage Area Evaluation:

The drainage area to the Filterra® HC in this example is 0.25 acres. Included in Table 1 below, all of the Filterra® HC models are designed with a maximum allowable drainage area greater than 0.25 acres. Specifically, the Filterra® HC with a 4'x4' media bay and a maximum allowable drainage area of 0.40 acres would be the smallest model able to treat runoff without exceeding the maximum allowable drainage area.

Maximum Treatment Flow Rate (MTFR) Evaluation:

The site runoff (Q) was based on the following:

time of concentration = 10 minutes

i = 3.2 in/hr (page 5-8, Fig. 5-3 of the NJ Stormwater BMP Manual)

c = 0.99 (runoff coefficient for impervious)

 $Q = ciA = 0.99 \times 3.2 \times 0.25 = 0.79 cfs$

Given the site runoff is 0.79 cfs and based on the MTFR's listed in Table 1 below, the Filterra® HC with a 16'x8' media bay and an MTFR of 0.889 cfs would be the smallest model that could be used to treat the impervious area without exceeding the MTFR. If using more than one unit for treating runoff, the units should be configured such that the flowrate to each unit does not exceed the design MTFR for each unit and ensuring the entire 0.25 acre area is treated.

The MTFR evaluation results will be used since that method results in the highest minimum configuration determined by the two methods.

The sizing table corresponding to the available system models is noted below:

Table 1. Filterra® HC MTFRs and Maximum Allowable Drainage Areas

	Available Filterra® Media Bay Sizes (feet)	Effective Filtration Treatment Area (ft ²)	Treatment Flow Rate (cfs)	Maximum Allowable Drainage Area (ac)
	4x4	16	0.111	0.40
	4x6 or 6x4	24	0.167	0.60
S	4.5x7.83 or 7.83x4.5 (Nominal 4x8-8x4)	35.24	0.245	0.89
Standard Configuration Filterra and Filterra Biosape Vaults	6x6	36	0.250	0.91
ation	6x8 or 8x6	48	0.333	1.21
Mandard Configuration a and Filterra Biosape	6x10 or 10x6	60	0.417	1.51
Con	6x12 or 12x6	72	0.500	1.81
dard kd Fil	7x13 or t3x7	91	0.632	2.29
Man ra an	14x8	112	0.778	2.82
ilten	16x8	128	0.889	3.22
14	18x8	144	1,000	3.62
	20x8	160	1.111	4.03
	22x8	176	1.222	4.43
	4x4	16	0.111	0.40
	4.5x5.83 (Nominal 4x6)	26.24	0.182	0.66
	6x4	24	0.167	0.60
aults	6x6	36	0.250	0.91
7 27	6x8	48	0.333	1.21
Filterra Vaults	6x 10 or 10x6	60	0.417	1.51
	7×10	761	0.486	1.76
	8x10.5	84	0.583	2.11
	8x12.5	1(11)	0,694	2.52
	Custom and/or Filterra Bioscape	Media Area m ft ²	0.00694 * (Media Area in ft²)	0.0252 * (Media Area in)

Be advised a detailed maintenance plan is mandatory for any project with a Stormwater BMP subject to the Stormwater Management rules, N.J.A.C. 7:8. The plan must include all of the items identified in the Stormwater Management rules, N.J.A.C. 7:8-5.8. Such items include, but are not limited to, the list of inspection and maintenance equipment and tools, specific corrective and preventative maintenance tasks, indication of problems in the system, and training of maintenance personnel. Additional information can be found in Chapter 8: Maintenance and Retrofit of Stormwater Management Measures.

If you have any questions regarding the above information, please contact me at (609) 633-7021.

Sincerely,

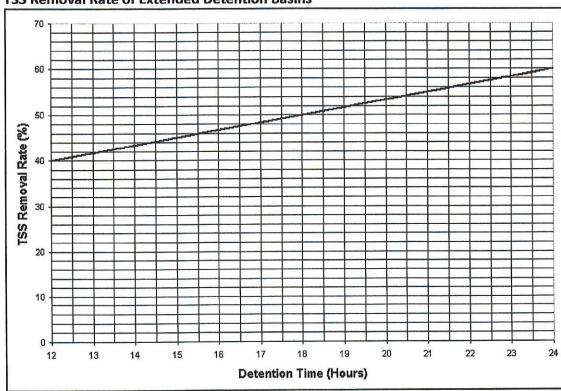
Gabriel Mahon, Chief

Bureau of Stormwater Permitting

Attachment: Maintenance Plan

cc: Chron File

Richard Magee, NJCAT


Vince Mazzei, NJDEP - Water & Land Management

Nancy Kempel, NJDEP – BSTP Keith Stampfel, NJDEP – DLRP Dennis Contois, NJDEP – DLRP

TSS Removal Rates for Extended Detention Basins

Extended detention basins are designed to provide treatment of runoff volume generated by the Water Quality Design Storm (WQDS). Techniques to compute this volume are discussed in *Chapter 5:* Stormwater Management Quantity and Quality Standards and Computations.

The TSS removal rate for an extended detention basin is based on the basin's detention time. The detention time begins when the maximum storage volume is achieved and ends when only 10% of the maximum volume remains. The chart below shows the TSS removal rate for a given detention time. As previously stated, for the purposes of TSS removal rate calculations, the minimum detention time is 12 hours, and the maximum detention time is 24 hours. Systems with detention times in excess of 24 hours will still only be credited with a 60% TSS removal rate. Extrapolation beyond the minimum and maximum detention times of 12 and 24 hours, respectively, is not allowed.

TSS Removal Rate of Extended Detention Basins

To determine the TSS removal rate for an extended detention basin, either the chart above or the following equation may be used:

% TSS Removal Rate =
$$40 + \left\{20 \ x \left[\frac{t-12}{12} \right] \right\}$$

where t is the time of detention in hours and $12 \le t \le 24$.

The example located on the following page illustrates how to use the chart to determine the TSS removal rate provided.

108

Type.... Time vs. Volume

Page 11.01

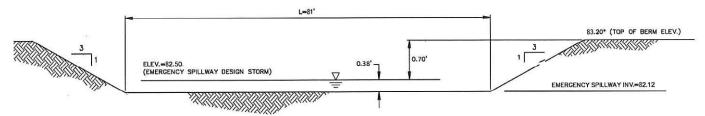
Name.... BAS+136 CHAMB

Tag:

Event: 1 yr

 $\label{eq:file....} F: $$1107537A \ 1107537C \ge gn\ \ Basin\ With\ Infiltration.ppw $$$ Storm... NJDEP Water Qual Tag:

1


1

TIME vs. VOLUME (cu.ft)

Time			Output Tin	ne increment	= .1000 hrs		
hrs	ļ	Time on left	represents	time for fin	st value in	each row.	
.5000	 	0	1	29	140	512	
1.0000	l	2186	5684	8711	10023	10649	- Peak @ 1.9 hrs
1.5000		11095	11462	11752	11967	12020	
2.0000	1	11969	11841	11631	11410	11190	
2.5000		10972	10756	10541	10328	10118	
3.0000	["	9908	9701	9496	9292	9090	
3.5000	1	8890	8692	8496	8301	8109	
4.0000		7918	7730	7543	7358	7175	
4.5000	1	6994	6815	6638	6463	6290	
5.0000	1	6119	5950	5784	5619	5457	
5.5000	1	5297	5139	4984	4832	4683	
6.0000	1	4537	4393	4252	4114	3978	
6.5000	Î	3845	3714	3586	3460	3336	
7.0000	1	3214	3095	2977	2861	2746	
7.5000	1	2632	2520	2408	2298	2189	
8.0000	1	2081	1975	1870	1767	1666	- ~ 102 peak
8.5000	1	1567	1470	1375	1283	1192	- ~ 102 peak Volume
9.0000	Ī	1104	1020	939	860	785	
9.5000	Î	713	643	576	511	448	@ 8.9hg
10.0000	Î	389	334	288	247	213	C
10.5000	I	183	158	136	117	100	
11.0000	1	86	74	64	55	47	
11.5000	Î	41	35	30	26	22	7 hrs detention
12.0000	I	19	17	14	12	11	1 MEZ GEANILL
12.5000	l	9	8	7			time
							< 12 hos for
							time 2 12 hrs for busin to provide TSS removal
							provide TSS
							removal

EMERGENCY SPILLWAY DESIGN

Emergency SpillwayCalculations

EMERGENCY SPILLWAY SECTION

NO SCALE

*1.08' of freeboard to 100 year storm elevation in basin.

DESIGN FOR PEAK

100 YEAR STORM INFLOW TO BASIN

Q= 48.3 CFS

C= 2.56 (for 10' wide broad crested weirs taken from Brater & King)

Q=CLH^3/2

Find L when H =

0.38 ft

L= Q/C * (H)^3/2

 $L = [48.3 \text{ cfs } / (2.56) \text{ x } (0.38 \text{ ft })^{3} = 80.50 \text{ ft } use 81'$

Check velocity through emergency spillway

V=Q/A

V = 48.3 cfs / (81 ft x 0.38 ft) = 1.6 fps

1.6 fps ≤3.0 fps (allow. vel. for silt loam)

Therefore, grass lined emergency spillway will be stable

STORM SEWER AND CONDUIT OUTLET PROTECTION CALCULATIONS

DRAINAGE COMPUTATION SHEET

Rational Method

oę

Sheet

Hopewell Valley Engineering, P.C.

1600 Reed Road, Suite A Pennington, NJ 08534

Spruce St Apartments

MUNICIPALITY:

FROM STRUCTURE ИИМВЕК

PROJECT: JOB #:

0.012 (HDPE) STORM FREQUENCY: 100 4& II _ PIPE

CALC BY: DATE:

202 Scot RMS

REMARKS			Includes Rust Dais		e on the parameter of the control of	Basin Outfall			
TIME OF FLOW			ú	7.0			6'0	2.0	1.1
LENGTH OF PIPE (FT.)		50.000	48	206		8	101	97	236 1.1
ACTUAL VELOCITY (FT. PER. SEC.)			4.5	5,2		7.3	0,0	2.0	3.2
FULL VELOCITY (FT. PER SEC.)		3	4.03	4.55		4.9	2.9	2.9	2.9
CAPACITY OF (S73) REWER		8 8 8	4.95	8.05		11.4	100 100	100	3,5
SCOPE %		je.	9	9'0		0'1	57.0	0.25	97,0
DIAMETER OF PIPE (IN.)			\bar{v}	18		\widetilde{a}	$\bar{\pi}$	10	15
TYPE STRUCTURE			Fret F	Inlet		Inlet	Atalet	Storm	H H S
FLOW VOLUME (CFS) (Q=CIA)	INLET		4	3.7		3.5	0.46	0,46	600
INTENSITY (IN. PER HR.) (I)	NLET		1.6	9,0		1.6	2.1.0	1 1	9.1
TIME OF CONCENTRATION (MIN)	INLET		5	0 0 0 m		0.0	ee	1 1	0.7.1
(ADZ) ABRA LATOT (8BRDA 001)			44.0	0.85		1.23	0.05	1 1	0.27
EQUIVALENT AREA (2*A) (100% ACRES)			0.44	0.41		0.38	0,05	ſ	0.27
COEFFICIENT OF RUNOFF C			46.	15		88'	0,3	1	.86
INCREMENTS OF AREA - ACRES (A)			140	0,55		0.43	0,15	F	0,31
TO STRUCTURE MUMBER			m	2		WW	12.A	12	-

w 4

3

12A

N

N

3

DRAINAGE COMPUTATION SHEET

Rational Method

 ω

Sheet 2 of

Hopewell Valley Engineering, P.C. 1600 Reed Road, Suite A Pennington, NJ 08534

Spruce St Apartments 1107537c Township

MUNICIPALITY: PROJECT: JOB#:

PIPE

STORM FREQUENCY: 100 44 || |-

0.012 CHDPE)

CALC BY: DATE:

RES

707 Sept,

REMARKS				Includes Roof Avers from 131895 / #2				header pipe to the	bacin WW #5 is located on this header @ 79.0	œ.
TIME OF FLOW			0.6	0.2	0.5	0,5	0.1			
LENGTH OF PIPE (FT.)			17	56	205	76	25	90		
ACTUAL VELOCITY (FT. PER . SEC.)			5.6	4.5	6.5	5.8	0	2.5		
FULL VELOCITY (FT. PER SEC.)			4.9	4.03	2:5	2'0	5'5	6.5		
CAPACITY OF SEWER (CFS)			6.06	4.95	7.0	8.9	17.3	20.7		
SFOPE %			0.75	0.5	1.0	0.0	5'0	1.0		
DIAMETER OF PIPE (IU.)			12	70	15	(8)	24	74		
ТҮРЕ STRUCTURE			Inter	A	BINCE	方の	H W	Faler		
ELOW VOLUME	INLET	PIPE	un oo	4.0	2.7	2000	14.5	20.6		
ЯЗЧ .ИІ) ҮІВИЗТИ! (I) (.ЯН	INLET	PIPE	- 00	1'6	9.1	1.6	18	1.6		
TIME OF CONCENTRATION (MIN)	INLET	PIPE	te	9	6.2	6.7	0,8	io e		
TOTAL AREA (∑CA)	INLET	PIPE	w a	44.0	0.3	0.26	1.67	2.4		
EQUIVALENT AREA (C*A) (100% ACRES)			in G	2770	0.3	0.26	 1.67	60.0		
COEFFICIENT OF RUNOFF C			.95	.94	16.	36'	56'	136.		
носкемеить оғ АРЕЬ - АСКЕЅ (А)			0.34	0,47	0.31	12:0	1.62	10.77		
TO STRUCTURE ABMUN			±0 €	15	14	かり	6	せん		
FROM STRUCTURE NUMBER			=	15A	$\bar{\rho}$	14	¥ 0	6		

DRAINAGE COMPUTATION SHEET

Rational Method

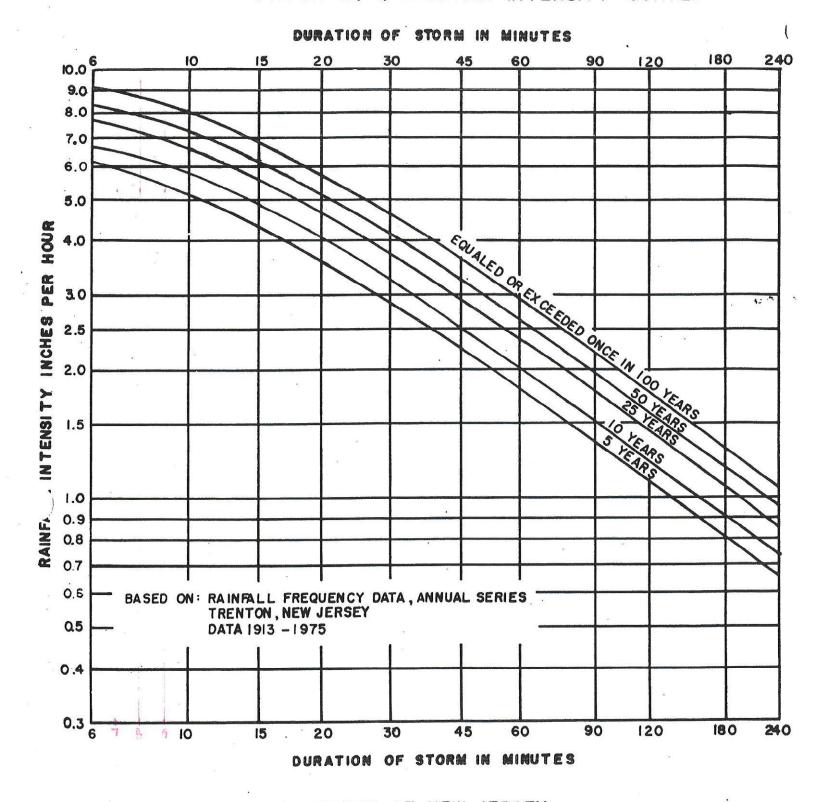
Sheet $\frac{3}{2}$ of $\frac{3}{2}$

Hopewell Valley Engineering, P.C. 1600 Reed Road, Suite A

Pennington, NJ 08534 JOB #: MUNICIPALITY: PROJECT:

STORM FREQUENCY: PIPE Spruce St Appartments

100 5


0.012 (HOPE)

CALC BY: DATE:

RAS

Sept, 2021

REMARKS						to exist 15" RCP	to Serve St doing	Sarte									
TIME OF FLOW			(j							31.51901						
LENGTH OF PIPE (FT.)				4	1	52											
YCTUAL VELOCITY (DEC.)				8 8 8	7	4											
FULL VELOCITY (FT. PER SEC.)				4.02	,	403							8;				
CAPACITY OF SEWER (CFS)			9	4.95	<	4.25							.,				
SFOPE %				0 N	9	0											
DIAMETER OF PIPE (IN.)				Ñ		S											Parent -
зяитоияте зчүт			Ø	TNEST	Œ	Inlet								22411			
FLOW VOLUME (CFS) (Q=CIA)	NET	PIPE	6	1	.36	2.4											
INTENSITY (IN. PER HR.) (I)	INLET	PiPE	15	1.6	1.5	1.6											
TIME OF CONCENTRATION (MIN)				e		6.2											
(AOZ) ABAA LATOT (SBROA 001)	INLET	PIPE	0.27	22'0	4000	0,26											
EQUIVALENT AREA (C*A) (100% ACRES)				0.12		0.04											inespectation.
COEFFICIENT OF RUNOFF C				96.0		0.1											
искемеить оғ АРЕА - АСРЕБ (А)			-	かっ		40,0											
TO STRUCTURE MUMBER				17	五五	16							••				
FROM STRUCTURE NUMBER			-	à	1	7											

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES FLOOD PLAIN MANAGEMENT 1976

FIG 2.1-2(B-1) RAINFALL INTENSITY CURVES

ADS N-12® ST IB PIPE (ASTM F2648) SPECIFICATION

Scope

This specification describes 4- through 60-inch (100 to 1500 mm) ADS N-12 ST IB pipe (per ASTM F2648) for use in gravity-flow land drainage applications.

Pipe Requirements

ADS N-12 ST IB pipe (per ASTM F2648) shall have a smooth interior and annular exterior corrugations.

- 4- through 60-inch (100 to 1500 mm) pipe shall meet ASTM F2648.
- Manning's "n" value for use in design shall be 0.012.

Joint Performance

Pipe shall be joined using a bell & spigot joint meeting ASTM F2648. The joint shall be soil-tight and gaskets for diameters 12- through 60-inch, shall meet the requirements of ASTM F477. For diameters 4- through 10-inch, the joint shall be soil-tight using an engaging dimple connection. Gaskets shall be installed by the pipe manufacturer and covered with a removable, protective wrap to ensure the gasket is free from debris. A joint lubricant available from the manufacturer shall be used on the gasket and bell during assembly.

Fittings

Fittings shall conform to ASTM F2306. Bell and spigot connections shall utilize a welded bell and valley or saddle gasket meeting the soil-tight joint performance requirements of ASTM F2306.

Material Properties

Material for pipe production shall be an engineered compound of virgin and recycled high density polyethylene conforming with the minimum requirements of cell classification 424420C (ESCR Test Condition B) for 4- through 10-inch (100 to 250 mm) diameters, and 435420C (ESCR Test Condition B) for 12- through 60-inch (300 to 1500 mm) diameters, as defined and described in the latest version of ASTM D3350, except that carbon black content should not exceed 4%. The design engineer shall verify compatibility with overall system including structural, hydraulic, material, and installation requirements for a given application.

Installation

Installation shall be in accordance with ASTM D2321 and ADS recommended installation guidelines, with the exception that minimum cover in trafficked areas for 4- through 48-inch (100 to 1200 mm) diameters shall be one foot. (0.3 m) and for 60-inch (1500 mm) diameter the minimum cover shall be 2 ft. (0.6 m) in single run applications. Backfill for minimum cover situations shall consist of Class 1 (compacted) or Class 2 (minimum 90% SPD) material. Maximum fill heights depend on embedment material and compaction level; please refer to Technical Note 2.02. Contact your local ADS representative or visit our website at www.ads-pipe.com for a copy of the latest installation guidelines.

Pipe Dimensions

					Nomin	al Diamete	er, in (mm)						
Pipe I.D. in (mm)	(100)	6 (150)	8 (200)	10 (250)	12 (300)	15 (375)	18 (450)	24 (600)	30 (750)	36 (900)	42 (1050)	48 (1200)	60 (1500
Pipe O.D.*	4.8	6.9	9.1	11.4	14.5	18	22	28	36	42	48	54	67
in (mm)	(122)	(175)	(231)	(290)	(368)	(457)	(559)	(711)	(914)	(1067)	(1219)	(1372)	(170

^{*}Pipe O.D. values are provided for reference purposes only, values stated for 12 through 60-inch are ±1 inch. Contact a sales representative for exact values **All diameters available with or without perforations.

TABLE 1106.2 SIZE OF VERTICAL CONDUCTORS AND LEADERS

DIAMETER				HORIZ	ONTALLY P	ROJECTED	ROOF AR	EA (square	feet)	~		
OF LEADER						all rate (inc						
(inches)a	1	2	3	4	5	6	7	8	9	10	11	12
2	2,880	1,440	960	720	575	480	410	360	320	290	260	240
3	8,800	4,400	2,930	2,200	1,760	1,470	1,260	1.100	980	880	800	730
4	18,400	9,200	6,130	4,600	3,680	3,070	2,630	2,300	2,045	1,840		
5	34,600	17,300	11,530	8,650	6,920	5,765	4,945	4,325	3,845	3,460	1,675	1,530
6	54,000	27,000	17,995	13,500	10,800	9,000	7,715				3,145	2,880
8	116,000	58,000	38,660	29,000	23,200	-		6,750	6,000	5,400	4,910	4,500
ST. 1 inch.	25.4 1			22,000	23,200	19,315	16,570	14,500	12,890	11,600	10,545	9,660

For SI: 1 inch = 25.4 mm, 1 square foot = 0.0929 m².

TABLE 1106.3 SIZE OF HORIZONTAL STORM DRAINAGE PIPING

HORIZONTAL PIPING (Inches)	1	2	NTALLY PROJECTED Rainfall rate (inc		e idet)	2 to 17 A 4 4 4 4 4
(Inches)	1	and the second of the second o		ines has sont)		
			(3)	4	5	6
		1/8 unit vertical in 1	2 units horizontal (-percent slope)		9/7 q 1/2
3	3,288	1,644	1,096	822	657	548
4	7,520	3,760	2,506	1,800	1,504	
5	13,360	6,680	4,453	3,340	2,672	1,253
6	21,400	10,700	7,133	5,350	4,280	2,227
8	46,000	23,000	15,330	11,500	9,200	3,566
10	82,800	41,400	27,600	20,700	16,580	7,600
12	133,200	66,600	44,400	33,300		13,800
15	218,000	109,000	72,800	59,500	26,650 47,600	22,200 39,650
		1/4 unit vertical in 12			47,000	39,030
3	4,640	2,320	1,546	1,160	000	
4	10,600	5,300	3,533	2,650	928	773
5	18,880	9,440	6,293	4,720	2,120	1,766
6	30,200	15,100	10,066	7,550	3,776	3,146
8	65,200	32,600	21,733	16,300	6,040	5,033
10	116,800	58,400	38,950	29,200	13,040	10,866
12	188,000	94,000	62,600	47,000	23,350	19,450
15	336,000	168,000	112,000	84,000	37,600 67,250	31,350
	**************************************	1/2 unit vertical in 12			0,7,230	56,000
3	6,576	3,288	2,295	1,644	1 1010	- 1001
4	15,040	7,520	5,010		1,310	1,096
5	26,720	13,360	8,900	3,760	3,010	2,500
6	42,800	21,400	13,700	6,680	5,320	4,450
8	92,000	46,000	30,650	10,700 23,000	8,580	7,140
10	171,600	85,800	55,200		18,400	15,320
12	266,400	133,200	88,800	41,400	33,150	27,600
15	476,000	238,000	158,800	66,600 119,000	53,200 95,300	44,400 79,250

For SI: 1 inch = 25.4 mm, 1 square foot = 0.0929 m^2 .

Blg Roof Area = 9,267 SF

a Sizes indicated are the diameter of circular piping. This table is applicable to piping of other shapes provided the cross-sectional shape fully encloses a circle of the diameter indicated in this table.

APPENDIX B

RATES OF RAINFALL FOR VARIOUS CITIES

Rainfall rates, in inches per hour, are based on a storm of one-hour duration and a 100-year return period. The rainfall rates shown in the appendix are derived from Figure 1106.1.

Alabama:	Georgia:	Maryland:	New Hampshire
Birmingham 3.8	Atlanta3.7	Baltimore3.2	New Hampshire: Berlin2.5
Huntsville 3.6	Dalton3.4	Hagerstown 2.8	Concord2.5
Mobile 4.6	Macon	Oakland2.7	Keene 2.4
Montgomery 4.2	Savannah 4.3	Salisbury3.1	the meaning that is
	Thomasville 4.3		New Jersey:
Alaska:		Massachusetts:	Atlantic City 2.9
Fairbanks1.0	Hawaii:	Boston 2.5	Newark 3.1
Juneau0.6	Hilo	Pittsfield 2.8	Trenton 3.1
Arizona:	Honolulu3.0	Worcester 2.7	New Mexico:
Flagstaff2.4	Wailuku 3.0	25 (153) A S	Albuquerque 2.0
Nogales3.1	Idaho:	Michigan:	Hobbs 3.0
Phoenix2.5	Boise0.9	Alpena 2.5	Raton
Yuma1.6	Lewiston 1.1	Detroit2.7	Roswell2.6
10ma	Pocatello1.2	Grand Rapids 2.6	Silver City 1.9
Arkansas:	rocatello1.2	Lansing 2.8	
Fort Smith 3.6	Illinois:	Marquette 2.4	New York:
Little Rock 3.7	Cairo 3.3	Sault Ste. Marie 2.2	Albany 2.5
Texarkana3.8	Chicago3.0	y a	Binghamton 2.3
	Peoria3.3	Minnesota:	Buffalo 2.3
California:	Rockford 3.2	Duluth 2.8	Kingston 2.7
Barstow1.4	Springfield 3.3	3.61	New York 3.0
Crescent City1.5	* Dr. Carolin	Minneapolis 3.1	Rochester 2.2
Fresno : 1.1 .		Moorhead3.2	North Carolina: Asheville 4.1 Charlotte 3.7 Greensboro 3.4
Los Angeles 2.1	Evansville3.2	Worthington3.5	Asheville 4.1
Needles 1,6 4	Fort Wayne 2.9	No. A. A. A. A. A.	Charlotte 3.7
Placerville 1.5	Indianapolis 3.1	Mississippi:	Greensboro 3.4
San Fernando2.3	The same of the sa	Biloxi 4.7 Columbus 3.9	Wilmington 4.2
San Francisco 1.5	Lowa:	County County	North Delector
San Francisco 1.5 Vreka 1,4	Davenport3.3	Corinth 3.6	North Dakota: Bismarck 2.8
Old State of the S		Natchez4.4 Vicksburg4.1	Bismarck 2.8 Devils Lake 2.9
Colorado:	Dubuque 3.3	vicksburg 4.1	Fargo3.1
Craig	Sioux City3.6	Missouri:	Williston 2.6
Denver2.4	Kansas:	Columbia3.2	Committee and Control of the Control
Durango 1.8 Grand Junction 1.7	Atwood 3.3	Kansas City 3.6	Ohio:
	Dodge City 3.3	Springfield3.4	Cincinnati 2.9
Lamar	Topeka3.7	St. Louis 3.2	Cleveland2.6
1 40010	Wichita3.7		Columbus 2.8
Connecticut:	Wiemta	Montana:	Toledo 2.8
Hartford2.7	Kentucky:	Ekalaka 2.5	Oklahoma:
New Haven 2.8	Ashland3.0	Havre	Altus 3.7
Putnam 2.6	Lexington3.1	Helena	Boise City 3.3
	Louisville3.2	Kalispell 1.2	Durant 3.8
Delaware:	Middlesboro3.2	Missoula 1.3	Oklahoma City 3.8
Georgetown3.0	Paducah3.3		Oregon:
Wilmington3.1		Nebraska:	Baker0.9
	Louisiana:	North Platte 3.3	Coos Bay1.5
District of Columbia:	Alexandria4.2	Omaha3.8	Eugene1.3
Washington 3.2	Lake Providence 4.0	Scottsbluff3.1	Portland1.2
Florida:	New Orleans 4.8	Valentine 3.2	
Jacksonville4.3	Shreveport3.9	Nevada:	Pennsylvania:
Key West4.3	Maine:		Erie 2.6
Miami4.7		Elko	Harrisburg 2.8
Pensacola4.6	Bangor2.2	Ely	Philadelphia 3.1
	Houlton2.1	Las Vegas1.4	Pittsburgh 2.6
Tampa4.5	Portland2.4	Reno 1.1	Scranton2.7

CONDUIT OUTLET PROTECTION CALCULATIONS

PROPOSED 18" HDPE WW #1 INTO DETENTION/INFILTRATION BASIN (FROM B INLET #2)

$$Q_{100} = 10.5 \text{ CFS } (18\text{" RCP})$$

$$q_{100} = 10.5/1.5 = 7.0 \text{ CFS/FT}$$

$$D_0 = W_0 = 18$$
" = 1.5'

Use 2 Year Storm
$$T_w = 80.74 - 79.0 = 1.74$$

La = 3
$$(q/D_0^{0.5})$$
 = 3 $(7/1.5^{0.5})$ = 17.1' use 18.0'

$$W_a = 3W_0 + 0.4La = 3(1.5) + (0.4)(18) = 11.7$$
' use 12.0 '

W' =
$$3D_0 = 3(1.5) = 3.75$$
 use 4.0 '

$$D_{50} = (0.02/T_w)q^{1.33} = (0.02/1.74)7.0^{1.33} = 0.15$$
' use $\frac{4" \text{ MIN, }}{\text{FABRIC}} 8" \text{ THICK W/ FILTER}$

PROPOSED 24" HDPE WW #5 INTO DETENTION/INFILTRATION BASIN (FROM E INLET #9)

$$Q_{100} = 19.7 \text{ CFS } (24" \text{ RCP})$$

$$q_{100} = 19.7/2 = 9.85 \text{ CFS/FT}$$

$$D_o = W_o = 24$$
" = 2.0'

Use 2 Year Storm
$$T_w = 80.74 - 79.0 = 1.74$$

La = 3
$$(q/D_0^{0.5})$$
 = 3 $(9.85/2.0^{0.5})$ = 6.9° use $\underline{7.0}$ °

$$W_a = 3W_o + 0.4La = 3(2.0) + (0.4)(7.0) = 8.8$$
' use 9.0 '

W' =
$$3D_0 = 3(2.0) = 6$$
 use 6.0

$$D_{50} = (0.02/T_w)q^{1.33} = (0.02/1.74)9.85^{1.33} = 0.24 \text{'use} \ \underline{4\text{''MIN,}} 8\text{''THICK W/FILTER}$$

TWO (2) 24" HDPE DISCHARGE FROM DETENTION/INFILTRATION BASIN

$$Q_{100} = 15.05 \text{ CFS}$$

 $D_o = W_o = 15$ " = 1.25'
 $T_w = 0.2 D_o = 0.4$ '

$$q_{100}\!=15.05/2=7.52~CFS/FT$$

$$La = 1.8 (q/D_0^{0.5}) + 7 D_0 = (7.52/2^{0.5}) + 7 (2) = 19.3$$
' use $\underline{20.0}$ '

$$W_a = 3W_0 + La = 3(2) + 20 = 26$$
' use 26.0 '

$$W' = 3D_0 = 3(2) = 6.0$$
' use 6.0'

$$D_{50} = (0.02/T_w)q^{1.33} + 25\% = (0.02/0.4)7.52^{1.33} = 0.28$$
' use $\frac{4"MIN}{FABRIC}$ 8" THICK W/FILTER FABRIC

: Use this at both basin outlet wingwalls

Appendix A Stormwater Soil Test Results

NOTE: The attached soil test locations are shown on select Site Plan drawings

T	AWRENCE TOWNSHIP	/MEDCED COUNTY	Block	701
	A VV IN PARTY IN THE VV INSTITUTE		DIOUR	/(//

Lot 39

1.	Log Numbe	er SL 812-1	Method:	☑Profile Pit	□Boriı	ng 5	Zles	89.4					
2.	Soil Log:	Date Recorded:	August 12, 202	21		3/							
	(Inches) Bottom	Munsell Color Name a Fragment, If Present; S Contrast, If Present											
0-3" 3-60" 60-144 >144"	7.5YR8/4 Pink Silt Loam; subangular blocky, friable; <10% gravel; few, fine, faint mottling (10YR7/1 Light Gray) at 53"; no seepage. 7.5YR7/6 Reddish Yellow Sandy Loam; subangular blocky, friable; 10% gravel; no mottling; no seepage. >144" Machine Refusal.												
2a.	If mottling g	ive reason for mottling:	Regiono	ıl Water Table									
3.		er Observations: ndicate Depth: Flooded Depth a	ofter hours	=									
4.	☐ Massive Ro☐ Excessively ☐ Excessively ☐ Hydraulica ☐ Hydraulica ☐ Perched Zo	g Zones: Rock Substratum - Depth to ock Substratum - Depth to ock Substratum - Depth to ock Coarse Horizon - Depth ock Coarse Substratum - Dep lly Restrictive Horizon - De lly Restrictive Substratum one of Saturation - Depth one of Saturation - Depth	Top: Top to Bottom: _ oth to Top: Depth Top to Botto - Depth to Top: _ Top to Bottom: _	om:									
5.	Soil Suitabil	ity Classification: IIWr											
6.	that falsifica	ify that the information tion of data is a violation malties as prescribed in	n of the Water F	Pollution Control Act (
Signa	ture of Soil E	valuator		poll looks	Date	09-01-20	021						
Signa	ture of Profes	sional Engineer	7-		Date	09-01-20	021						
Theo	icense No. <u>33</u> dore H. Bay r-Risse Engi			Seal									

T		XX	T	T	TAT	CI	TI	XXXI	TOT	TTD	11	ATO	CED	CC	DUNT	1
1	ıΑ	V	VК	G U	IN) VV [161	HP	/ 1	инк	CER		JUNI	Y

Bayer-Risse Engineering, Inc.

Lot 39

1.	Log Numbe	er SL 812-2	Method:	☑Profile Pit	□Bori	ng	Blev	88.9
2.	Soil Log:	Date Recorded:	August 12, 202	21				0011
	(Inches) Bottom	Munsell Color Name Fragment, If Present; Contrast, If Present						
0-5" 5-78" 78-144" >144"	7.5YR7 seepag Machin	l. /4 Pink Silt Loam; sul /6 Reddish Yellow Sa e. e Refusal.	ndy Loam; sub	/, friable; <5% grav angular blocky, fria	el; no mot ìble; 10%	ttling; r gravel;	no seepag ; no motti	ge. ling; no
2a.		ive reason for mottling	;			*		
3.		er Observations: ndicate Depth: Flooded Depth	after hours	=				
4.	☐Massive Ro ☐Excessively ☐Excessively ☐Hydraulica ☐Hydraulica ☐Perched Zo	g Zones: tock Substratum - Depth ock Substratum - Depth tock Coarse Horizon - Depth tock Coarse Substratum - De tly Restrictive Horizon - Illy Restrictive Substratun one of Saturation - Depth one of Saturation - Depth	o Top: i Top to Bottom: _ cpth to Top: Depth Top to Bott in - Depth to Top: _ Top to Bottom: _	om:				
5.	Soil Suitabil	ity Classification: <u>I</u>						
6.	that falsifica	ify that the information tion of data is a violation malties as prescribed in	on of the Water I	Pollution Control Ac		. 58:10/	A-1 et seq	
Signat	ture of Soil E	valuator		THOU CONS	Date	09-01	-2021	
Signat	ture of Profes	sional Engineer	£-	G 1	Date	09-01	-2021	
	icense No. <u>33</u>	The state of the s		Seal				

LAWRENCE TOWNSHIP / MERCER COUNTY

Bayer-Risse Engineering, Inc.

Block 701

Lot 39

1.	Log Numbe	r SL 812-3	Method:	☑Profile Pit	□Borir	ng E	Elev	79.0
2.	Soil Log:	Date Recorded:	August 12, 202	21				
	bp - Bottom Munsell Color Name and Symbol; Estimated Textural Class; Estimated Volume % Coarse Fragment, If Present; Structure; Moist or Dry Consistence; Mottling Abundance, Size and Contrast, If Present							
0-2" 2-96" 96-116 >116"	7.5YR8/ 7.5YR7/	with fine/medium ro 4 Pink Silt Loam; su 6 Reddish Yellow Lo e at 96". est.	ıbangular blocky					
2a.	If mottling gi	ive reason for mottling	g:			2.		
3.		er Observations: Indicate Depth: 96" Flooded Depth	after hours	=				
4.	☐Massive Ro ☐Excessively ☐Excessively ☐Hydraulical ☐Hydraulical ☐Perched Zo	g Zones: ock Substratum - Depth ock Substratum - Depth ock Coarse Horizon - Depth och Coarse Substratum - D lly Restrictive Horizon - lly Restrictive Substratu ne of Saturation - Depth one of Saturation - Depth	to Top: th Top to Bottom: _ tepth to Top: Depth Top to Bottom: _ Top to Bottom: _ Top to Bottom: _	om:				
5.	Soil Suitabili	ity Classification: <u>I</u>						
6.	that falsificat	ify that the information of data is a violation alties as prescribed in	ion of the Water F	Pollution Control Ac				
Signat	ture of Soil Ev	valuator		pall (and	Date	09-01-20	021	
Signat	ture of Profes	sional Engineer			Date	09-01-20	021	A
	icense No. <u>33</u> dore H. Bay			Seal				

LAWRENCE TOWNSHIP / MERCER COUNTY

Block 701

Lot 39

1.	Log Numbe	er SL 812-4	Method:	☑Profile Pit	□Bori	ng	Elev	81.4
2.	Soil Log:	Date Recorded:	August 12, 20:	21				
	Depth (Inches) Op - Bottom Op - Bottom Munsell Color Name and Symbol; Estimated Textural Class; Estimated Volume % Coarse Fragment, If Present; Structure; Moist or Dry Consistence; Mottling Abundance, Size and Contrast, If Present							
>150"	Topsoil with fine/medium roots. 7.5YR8/4 Pink Silt Loam; subangular blocky, friable; 10% gravel; no mottling; no seepage. 7.5YR7/6 Reddish Yellow Loamy Sand; subangular blocky, friable; 10-20% gravel; no mottling; no seepage. 7.5YR8/2 Pinkish White Loamy Sand; subangular blocky, friable; 10-20% gravel; no mottling, no seepage.							
2a.	If mottling g	ive reason for mottlir	ng:					
3.		er Observations: ndicate Depth: Flooded Dept	h after hours	=				
4.								
5.	Soil Suitabil	ity Classification: <u>I</u>						
6.	that falsifica	ify that the information of data is a viola nalties as prescribed	tion of the Water I	Pollution Control A				
Signat	ture of Soil E	valuator		pal look	Date	09-01-	-2021	
Signat	ture of Profes	sional Engineer _	7-	ef.	Date	09-01-	-2021	
Theo	N.J. License No. 33806 Cheodore H. Bayer, PE Bayer-Risse Engineering, Inc.							

LAWRENCE TOWNSHIP / MERCER COUNTY

Bayer-Risse Engineering, Inc.

Block 701

Lot 39

1.	Log Number	r SL 812-5	Method:	☑Profile Pit	□Bori	ng	Blev	82.9	
2.	Soil Log:	Date Recorded:	August 12, 202	21					
	Bottom	Munsell Color Nam Fragment, If Presen Contrast, If Present	t; Structure; Moist						100000000000000000000000000000000000000
0-5" 5-54" 54-150 >150"	7.5YR8/		ubangular blocky						
. 150	Wacilling	Tube	Permeameter TP Permeameter TP						
2a.	If mottling gi	ve reason for mottlin	ng:						
		er Observations: adicate Depth: Plooded Dept	h after hours	=					
4.	☐ Massive Rod ☐ Excessively ☐ Excessively ☐ Hydraulicall ☐ Hydraulicall ☐ Perched Zor	¿Zones: ock Substratum - Dept ck Substratum - Dept Coarse Horizon - Dep Coarse Substratum - I ly Restrictive Horizon ly Restrictive Substratu ne of Saturation - Dept one of Saturation - Dept	to Top: oth Top to Bottom: _ Depth to Top: Depth Top to Botto um - Depth to Top: _ th Top to Bottom: _	om:					
5.	Soil Suitabili	ty Classification: <u>I</u>							
6.	that falsificat	fy that the informati ion of data is a viola nalties as prescribed	tion of the Water I	Pollution Control A	lication is tru Act (N.J.S.A.	e and 58:1	l accurate. 0A-1 et se	I am awar q.) and is	e
Signat	ture of Soil Ev	aluator	``.	Jodi Conto	Date	_09-	01-2021		
Signat	ure of Profess	sional Engineer _	7-	-	Date	09-	01-2021		
	icense No. <u>33</u>	Selection 1		Seal					4

LAWRENCE TOWNSHIP / MERCER COUNTY

Block 701

Lot 39

Form 3a. Soil Permeability Data

Assign a number for each test and a letter for each test replicate. Show test data and calculations on Form 3b, 3c, 3d, 3e, 3f, or 3g. Use one sheet for each separate test or test replicate.

1. Summary of Data - Enter data for each test replicate on a separate line.

Type of Test	Test (Number)	Replicate (Letter)	Depth (Inches)	Result*
Tube Permeameter	TP 13	Α	72"	K=0.8 in/hr
Tube Permeameter	TP 13	В	72"	K=0.7 in/hr
Tube Permeameter	TP 14	Α	120"	K=2.1 in/hr
Tube Permeameter	TP 14	В	120"	K=1.9 in/hr
Tube Permeameter	TP 15	Α	96"	K=4.5 in/hr
Tube Permeameter	TP 15	В	96"	K=4.2 in/hr

*For tube permeameter, pit bailing, and piezometer tests, report results in inches per hour. For Soil permeability class rating, give soil

permeability class number. For percolation test report result in minutes per inch. For basin flooding test report result as positive if basin drains completely within 24 hours of second filling, negative otherwise. Design Permeability/Percolation Rate: Specify Test Number: ___ 2. ☐ Average of Test Replicates ☐Single Replicate ☐Slowest Replicate Type of Limiting Zone Identified Test Number 3. 4. Attachments (Check items included): ☑ Form 3b - Tube Permeameter Test Data - Number of Sheets: 6 ☐ Form 3c - Soil Permeability Class Rating Test Data - Number of Sheets: ____ ☐Form 3d - Percolation Test Data - Number of Sheets: _____ ☐Form 3e - Piezometer Test Data - Number of Sheets: _____ ☐Form 3f - Pit Bailing Test Data - Number of Sheets: _____ ☐ Form 3g - Basin Flooding Test Data - Number of Sheets: _ I hereby certify that the information furnished on Form 3a of this application (and the attachments thereto) is true and 5. accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C.,7:14-8. Signature of Site Evaluator Date 09-01-2021 Signature of Professional Engineer Date

Seal

]	Form 3b. Tube Permeamete	er Test Data:		
	Test Number:	TP 13			ate Tested:	8/12/21
I.	Material Tested	—————————————————————————————————————	Native Soil - Indicate Depth:	72"		
I.	t 12	isturbed Distur	19 0			
V.	Sample Dimens	ions: Inside Radiu	s of Sample Tube, R, in cm.:	<u>2.54</u>		
	Length of Samp	le, L, in inches: 3	.625			
	Bulk Density Density	etermination (Dist	turbed Samples Only):			
	Sample Volume Bulk Density (Sa	(L × 2.54 cm./inch ample Wt./Sample	Volume), grams/cc.:	*		
I.			ndicate Internal Radius, cm.: 0	1.635	a a	
II.			m of Test Basin, in inches:			
	At the end of each	of each test interval, H ₂	: <u>8</u>			
III.	Rate of Water L	evel Drop (Add a	dditional lines if needed):			
	Time, Star	t of Test Interval T_1	Time, End of Test Interva	Length of Test T T (minute		
	0	:00:00	0:03:45	3.75		
	0	:00:00	0:03:48	3.80		
	0	:00:00	0:03:48	3.80		
X.	Calculation of F	Permeability:				
	,	PERMANENTAL PROPERTY CARROL	$\frac{(in)}{T(min)} \times ln(H_1/H_2)$ $\frac{54^2}{100} \times \frac{3.625}{3.80} \times ln(\frac{10}{8}) = \frac{10}{100}$	0.8 in/hr		
	Defects in the S	ample (Check app	propriate items):			
	☐Soil/Tube Co	ntact □Large Gra Smearing □Comp	nnels □Root Channels avel □Large Roots coaction			
XI.	falsification of	that the informatidata is a violation scribed in N.J.A.C	on furnished on Form 3b of the of the Water Pollution Control. 7:14-8.	is application is true and Act (N.J.S.A. 58:10A-	l accurate. I 1 et seq.) and	am aware that d is subject to
	COL E 1	vata.	Land Clark	£0	Date 09	9-01-2021
Signa	ature of Site Evalu	lator		/ 4		

N.J. License No. <u>33806</u>
<u>Theodore H. Bayer, PE</u>
<u>Bayer-Risse Engineering, Inc.</u>

			Form 3b. Tube Permeameter	Test Data:	
	Test Number	er: TP 13	Replicate (Letter): B	Date Tested	d: 8/12/21
I.	Material Te	sted: □Fill ☑Test i	n Native Soil - Indicate Depth: 72	<u>'''</u>	
II.	Sample:	Jndisturbed □Dist	ırbed		
V.	Sample Din	nensions: Inside Rad	ius of Sample Tube, R, in cm.: 2.	<u>54</u>	
	Length of S	ample, L, in inches:	<u>3.5</u>		
	Bulk Densi	y Determination (D	sturbed Samples Only):		
	Sample Voluments Bulk Densit	ume (L × 2.54 cm./ind y (Sample Wt./Sampl	e Volume), grams/cc.:		
I.	Standpipe U	Jsed: □No ☑Yes -	Indicate Internal Radius, cm.: 0.6	<u>35</u>	
II.	Height of V	ater Level Above R	im of Test Basin, in inches:	96	
	0	ning of each test inter f each test interval, , I			
III.	Rate of Wa	ter Level Drop (Add	additional lines if needed):		7
	Time,	Start of Test Interval T ₁	Time, End of Test Interval	Length of Test Interval T (minutes)	
		0:00:00	0:04:05	4.08	
		0:00:00	0:04:08	4.13	
		0:00:00	0:04:08	4.13	
ζ.	Calculation	of Permeability:			
			_(in)/T(min) × ln(H ₁ /H ₂) 2.54 ² × 3.5/4.13 × ln(10/8)=0.7 in	n/hr	
•	Defects in t	he Sample (Check a	ppropriate items):		
	□Soil/Tube □Dry Soil		nannels □Root Channels ravel □Large Roots rapaction		
XI.	falsification		tion furnished on Form 3b of this n of the Water Pollution Control A.C. 7:14-8.		
Signa	ture of Site I	Evaluator	tool look	Date	09-01-2021
	. CD C	ssional Engineer		Date	09-01-2021

N.J. License No. <u>33806</u> Theodore H. Bayer, PE Bayer-Risse Engineering, Inc.

LAW	RENCE TOWNSHIP / MERCI	ER COUNTY Block 70)1 Lot	39
	F	orm 3b. Tube Permeameter To	est Data:	
I.	Test Number: TP 14	Replicate (Letter): A	Date Tested:	8/12/21
II.	Material Tested: □Fill ☑Test in N		·	•
III.	Sample: ☑Undisturbed ☐Disturb		-	
IV.	Sample Dimensions: Inside Radius			
1 V .	Length of Sample, L, in inches: 4.1		i	
V.	Bulk Density Determination (Distu			
٧.	Sample Weight (Wt. Tube Containing		rams:	
	Sample Volume (L × 2.54 cm./inch	× 3.14R ²), cc.:		
	Bulk Density (Sample Wt./Sample V			
VI.	Standpipe Used: ☐No ☐Yes - Inc	dicate Internal Radius, cm.: 0.635	<u>5</u>	
VII.	Height of Water Level Above Rim	of Test Basin, in inches:	9	
	At the beginning of each test interval At the end of each test interval, , H ₂ :			
VIII.	Rate of Water Level Drop (Add ad	lditional lines if needed):		1
	Time, Start of Test Interval	Time, End of Test Interval T ₂	Length of Test Interval T (minutes)	
	0:00:00	0:01:37	1.62	
	0:00:00	0:01:36	1.60	
	0:00:00	0:01:37	1.62	
IX.	Calculation of Permeability:			
	K (in/hr) = 60 min/hr × r^2/R^2 × L(i K (in/hr) = 60 min/hr × 0.6352/2.5		in/hr	
X.	Defects in the Sample (Check appr	ropriate items):		
	☑None □Cracks □Worm Chan □Soil/Tube Contact □Large Grav □Dry Soil □Smearing □Compa □Other - Specify:	vel □Large Roots		
XI.	I hereby certify that the information falsification of data is a violation of penalties as prescribed in N.J.A.C.	of the Water Pollution Control Ac	oplication is true and accurate. t (N.J.S.A. 58:10A-1 et seq.) a	I am aware that nd is subject to
Signa	ature of Site Evaluator	pdi (and	Date	09-01-2021
Signa	ature of Professional Engineer	8-	Date	09-01-2021
		Seal		
	License No. <u>33806</u> odore H. Bayer, PE			
1110	CACIOTI, DAYOI, IL			

Bayer-Risse Engineering, Inc.

LAW	RENCE TOWNSHIP / MERCI	ER COUNTY Block 70	01 Lot	39
	न	orm 3b. Tube Permeameter T	est Data:	
I.	Test Number: TP 14	Replicate (Letter): B	Date Tested	l: 8/12/21
II.	Material Tested: □Fill ☑Test in N			
III.	Sample: ☑Undisturbed ☐Disturb		_	
IV.	Sample Dimensions: Inside Radius		1	
IV.				
V	Length of Sample, L, in inches: 4.8			
V.	Bulk Density Determination (Distu	*		
	Sample Weight (Wt. Tube Containin Sample Volume (L × 2.54 cm./inch Bulk Density (Sample Wt./Sample V	× 3.14R ²), cc.:	rams:	,
VI.	Standpipe Used: □No ☑Yes - Inc	dicate Internal Radius, cm.: 0.635	<u>5</u>	
VII.	Height of Water Level Above Rim	of Test Basin, in inches:		
	At the beginning of each test interval At the end of each test interval, , H ₂ :		•	
VIII.	Rate of Water Level Drop (Add ad	ditional lines if needed):	T	7
	Time, Start of Test Interval	Time, End of Test Interval T_2	Length of Test Interval T (minutes)	
	0:00:00	0:02:05	2.08	
	0:00:00	0:02:08	2.13	
	0:00:00	0:02:09	2.15	
IX.	Calculation of Permeability:			
	K (in/hr) = 60 min/hr × r^2/R^2 × L(in/hr) = 60 min/hr × $0.635^2/2.5$		<u>1/hr</u>	
X.	Defects in the Sample (Check appr	ropriate items):		
	☑None □Cracks □Worm Chan □Soil/Tube Contact □Large Grav □Dry Soil □Smearing □Compa □Other - Specify:	el □Large Roots		
XI.	I hereby certify that the informatio falsification of data is a violation openalties as prescribed in N.J.A.C.	f the Water Pollution Control Ac		
Signa	ature of Site Evaluator	Jode (auto	Date	09-01-2021
Signa	nture of Professional Engineer	8-	Date	09-01-2021
		Seal		
	License No. <u>33806</u> odore H. Bayer, PE			

Bayer-Risse Engineering, Inc.

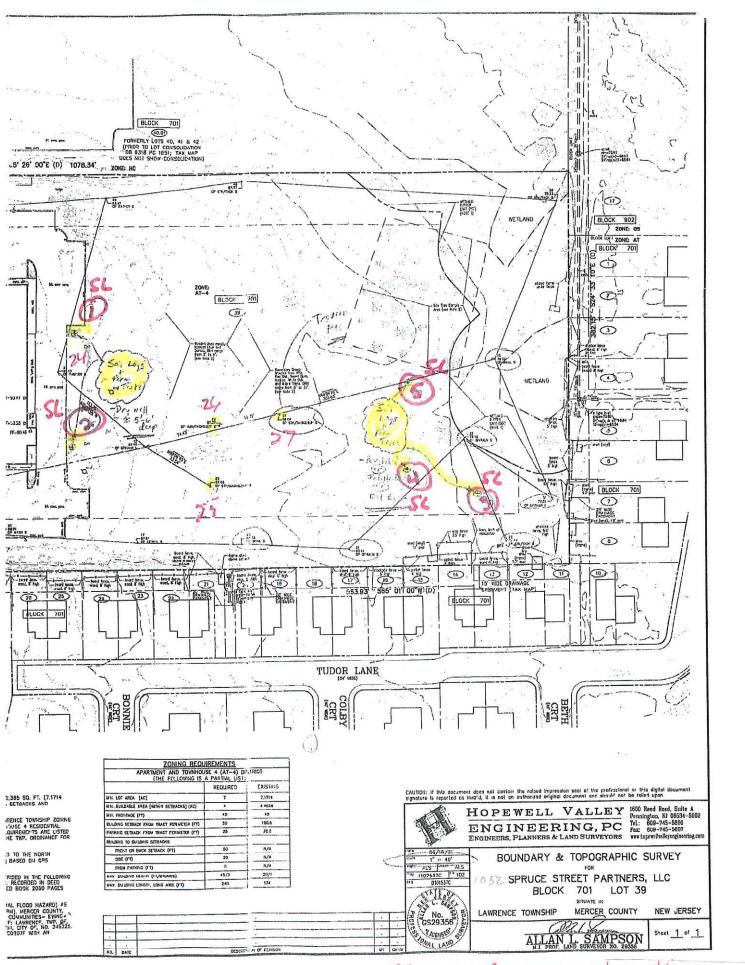
Lot 39

STORMWATER PERMEABILITY TEST

Block 701

LAWRENCE TOWNSHIP / MERCER COUNTY

		—— Form 3b. Tube Permeameter T	est Data:	
I.	Test Number: TP 15	Replicate (Letter): A	Date Tested	l: 8/12/21
II.	Material Tested: □Fill ☑Test in	Native Soil - Indicate Depth: 96"		
III.	Sample: ☑Undisturbed ☐Distur	bed		
IV.	Sample Dimensions: Inside Radio	us of Sample Tube, R, in cm.: 2.54	<u>Į</u>	
	Length of Sample, L, in inches: 4	.25		
V.	Bulk Density Determination (Dis	turbed Samples Only):		
	Sample Weight (Wt. Tube Contain Sample Volume (L × 2.54 cm./inch Bulk Density (Sample Wt./Sample		grams:	
VI.	Standpipe Used: □No ☑Yes - I	ndicate Internal Radius, cm.: 0.63	<u>5</u>	
VI.	Height of Water Level Above Ri	m of Test Basin, in inches:	W.	
	At the beginning of each test interval, , H			
VIII.	Rate of Water Level Drop (Add a	additional lines if needed):		7
	Time, Start of Test Interval	Time, End of Test Interval T ₂	Length of Test Interval T (minutes)	_
	0:00:00	0:00:49	0.82	
	0:00:00	0:00:48	0.80	
	0:00:00	0:00:47	0.78	
IX.	Calculation of Permeability:			
	K (in/hr) = 60 min/hr × r^2/R^2 × L K (in/hr) = 60 min/hr × 0.635 2/ 2	(in)/Γ(min) × ln(H ₁ /H ₂) <u>54²</u> × <u>4.25/.78</u> × ln(<u>10/8)</u> = <u>4.5 in/</u>	<u>/hr</u>	
X.	Defects in the Sample (Check ap	propriate items):	,	
	☑None □Cracks □Worm Cha □Soil/Tube Contact □Large Gr □Dry Soil □Smearing □Com □Other - Specify:	avel		
XI.	I hereby certify that the informat falsification of data is a violation penalties as prescribed in N.J.A.	on furnished on Form 3b of this ap of the Water Pollution Control Ac C. 7:14-8.	opplication is true and accurate at (N.J.S.A. 58:10A-1 et seq.)	. I am aware that and is subject to
Signa	ature of Site Evaluator	pade (auxo	Date	09-01-2021
Signa	ature of Professional Engineer	8	Date	09-01-2021
NIT	License No. 33804	Seal		
	License No. <u>33806</u> odore H. Bayer, PE			


Theodore H. Bayer, PE
Bayer-Risse Engineering, Inc.

LAW	RENCE TOWNSHIP / MERC	ER COUNTY Block 70	D1 Lot	39
	F	orm 3b. Tube Permeameter T	est Data:	
I.	Test Number: TP 15	Replicate (Letter): B	Date Tested	: 8/12/21
II.	Material Tested: □Fill ☑Test in N	Native Soil - Indicate Depth: 96"		
III.	Sample: ☑Undisturbed ☐Disturb	***		
IV.	Sample Dimensions: Inside Radius	s of Sample Tube, R, in cm.: 2.54		
	Length of Sample, L, in inches: 4.7	7 <u>5</u>		
V.	Bulk Density Determination (Distu	urbed Samples Only):		
	Sample Weight (Wt. Tube Containing Sample Volume (L × 2.54 cm./inch Bulk Density (Sample Wt./Sample V	× 3.14R ²), cc.:	rams:	
VI.	Standpipe Used: ☐No ☑Yes - Inc	dicate Internal Radius, cm.: 0.635	<u>5</u>	
VI.	Height of Water Level Above Rim	of Test Basin, in inches:	a a	
	At the beginning of each test interval At the end of each test interval, , H ₂ :			
VIII.	Rate of Water Level Drop (Add ad	ditional lines if needed):		٦
	Time, Start of Test Interval	Time, End of Test Interval T_2	Length of Test Interval T (minutes)	
	0:00:00	0:00:55	0.92	
	0:00:00	0:00:57	0.95	
	0:00:00	0:00:57	0.95	
IX.	Calculation of Permeability:			
	K (in/hr) = 60 min/hr × r^2/R^2 × L(i K (in/hr) = 60 min/hr × 0.635 ² / 2.5		<u>'hr</u>	
X.	Defects in the Sample (Check appr	ropriate items):		
	☑None □Cracks □Worm Chan □Soil/Tube Contact □Large Grav □Dry Soil □Smearing □Compa □Other - Specify:	vel □Large Roots		
XI.	I hereby certify that the informatio falsification of data is a violation openalties as prescribed in N.J.A.C.	f the Water Pollution Control Ac		
Signa	ture of Site Evaluator	Jack Cook	Date _	09-01-2021
Signa	ture of Professional Engineer	8	Date	09-01-2021
		Seal		
	License No. <u>33806</u> odore H. Bayer, PE			

Bayer-Risse Engineering, Inc.

FIELD SHEET - Locations Approximate

Appendix B

Existing and Developed Drainage Area Plan

FLM: INSERT TWO (2) PLAN POCKETS IN PLACE OF THIS SHEET